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PREFACE

The UGC Instructional Conference on 'Gravitation,
Quantum Fields and Superstrings' held at Madras in December
1986 was organised by the Department of Theoretical
Physics, University of Madras in collabaraticon with the
Institute of Mathematical Sciences, Madras. The conference
was second in a series aimed at bringing about an active
interaction between people working on gravity and
astrophysics on the one hand and field theory and
elementary particles on the other. It was a sequel to the
UGC supported instructional conference on 'Gravitation,
Gauge Theories and the Early Universe' held at the Indian
Institute of Science, Bangalore during May-June 1985.

This work comprises the content of courses of lectures
on four broad topics, namely i) Structure formation in the
universe, ii) Black holes and singularities, iii) Quantum
field theory methods and iv) Superstrings. Each course
included workshop sessions to elucidate the topics covered
in the main lectures and to discuss problems. It has not
been possibe to include a couple of lectrues in this volume
as they have been published elsewhere.

We are grateful to the University Grants Commission,
Delhi for providing the financial support to organise the
conference. We also thank the Tata Institute of
Fundamental Research, Bombay and the Institute of
Mathematical Sciences, Madras for providing token grants.
The conference was held in the Indian Institute of
Technology, Madras. The participants and lecturers were
also housed there. We are indebted to the I.I.T.
authorities for providing these facilities. Our special
thanks are due to Dr.B.Vishwanathan (Chemistry department),



Vi

Dr.S.G.Kamath and Prof. V.B.Johri (Mathematics department)
and Prof. V. Balakrishnan (Physics department) of I.I.T.
Madras in this connection. We thank the members of the
theoretical physics groups in the University of Madras and
the Institute of Mathematical Sciences who helped us in the
organisation of the conference.

We acknowledge the invaluable help rendered by
Sri.J.Segar (Department of Theoretical Physics, University
of Madras) in the preparation of the typescripts. We thank
Smt. C. Balambal, Sri. R.Kasthurirangan and Sri. Sukumar of
Devi Reprographics, Adayar, Madras for typing the
manuscripts neatly and accurately.

P.M. Mathews
Madras M.S. Sri Ram
June 1988. G. Rajasekaran
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OBSERVATIONAL COSMOLOGY

N.D. HARIDASS
Institute of Mathematical Sciences
Taramani, Madras - 600 113

LECTURE I

Cosmology is the study of the large scale structure of
the wuniverse we live in. I shall begin by describing the
so called 'standard' cosmology not because I believe it to
be the correct model of our universe but as a theoretical
framework to organise the relevant concepts. I am aware
that such a procedure is questionable on epistemological
grounds but have chosen it as a framework general enough to
encompass various notions currently considered important.

The basic assumption 1is that our wuniverse can be
approximated to a good degree by a spatially homogeneous
and 1is isotropic model. It should be emphasised that
isotropy homogeneity but not vice versa (the cylinder is an
example of a homogeneous but nonisotropic space).

The assumption of homogeneity and isotropy by itself
has some interesting consequences. This implies that inter

'particle' distances are of the type



d(t) = R(t)r (1.1)
Thus
v(t) = £(t) = R(t) r = R(t)/R(t) d(t) = H(t) d(t) (1.2)

which 1is the famous hubble's law. If the wunverse is
expanding H(t) > O. when the velocity v(t; ¢ c, the
redshift of the spectral lines ~ v/c = z and one gets

z ~H(t)/c d(t) (1.3)

#which is the famous redshift-distance relation. 1t
should be appreciated that this is just a reflection of the
isotropy and homogeneity and not of any detailed
cosmological model.

Before developing a cosmological model based on
general relativity theory, the presently accepted classical
theory of gravitation, it is instructive to examine a
cosmology based on newtonian gravitation and mechanics as
it shares some essential features with a more complete
treatment.

Let the test particle mass be y and let R(t) be the
radius of the sphere of dust which will act
gravitationally on u . The energy conservation equation
reads

ok
Ly R2 _CGMu _ (1.4)

which can be rewritten as

.2
R GM
s - —R. = -12KC (1.5)




where - 1/2 kc2 is the energy per unit mass. If it is

assumed that matter is neither created nor destroyed, the
mass conservation implies
4mp R°/3 = M = constart (1.6)

As argued before, homogeneity and 1isotropy is
sufficient to yield

.
~
o
~

v(t) = H({t) () H(t) = (1.7)

3

When k 0, the equation

ﬁz = 2GM/R has the simple solut ion

ZR¥2(t) = /AWM.t i.e. R(L) = (9oM/2)' 3% 2/3

2

and o(t) ~t~ (1.8)

close to R~0, the k02 term is unimportant and the above
behaviour is correct if k = O. If k is positive, R cannot

grow beyond

R . 2GM/kC2

max (1.9)

By a suitable choice of scale, k can be made to be
+1. If k is negative, R(t) can increase indefinitely. For
large R, the kc2/2 term completely dominates and one has

R(t) = vk . ct (1.10)

LECTURE II

Let us turn our attention to a (cosmological) model of
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isotropic and homogeneous wuniverse based on general
relativity. The line element of such a (Friedman) universe
can be written in the form

2
2 2.2
ds® = c®at? - RZ(t) (2 _ + r2 (de%+sine dp2)}(2.1)
1=kr
where Kk = + 1,0. The curvature of a spatial
hypersurface t = const is
(3 6Kk
R - . (2.2)
RE(t )

which gives a very simple geometrical interpretation
to the parameter k. If we approximate the matter
distribution by a fluid the Einstein equations become (oo
components)
hZ

- 8mGpR%/3 = - ke (2.7)

which takes exactly the same form as in Newtonian
Cosmology even though k has a radically different
interpretation (so does c!). The spatial components of
Einstein's equation yield

e .2 2
L 35 ¢ k°2 - - 8nGp/c2 (2.4)
R R R
Differentiating (1) i4.1r.t. t,
2RR-50 c2rRp - 8" cr?p -0 (2.5)
Eliminating R
R
R R =72 P
e 23 =3
R° R ' . ’
2RR + g - 5+ 8" goRR - - 818 pRR



Therefore
s 8nGoRR + 20 R% + 8IC p RR = O
c
ie. (p %)+ (R)'ES -0 (2.6)
c
When the pressure is negligibly small
pR3 = const ant (2.7)
Consequently
3
ot ) = pty) Blte) (2.8)
R7(t)
The solution of the field equations is
R =a(1-Cos w)
kK = #1 - 418 R’
ct =a(w-Sin w) 3c
R = ( 93»4_ y1/302/3 L g
R = a(Cosh w-1)
k = -1
ct = a(Sinh w-w) (2.9)

Particle Horizon:

The propagation of light rays along radial direction
is governed by
dr2

1-kr

ds? = 0 = %t ? - R%(t)
Hence t P

> (2.10)

e e e
g Rt J1a? S '
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The function

-
d -1

F(r) = J*———x—— = Sin" 'r k = 1

ps /1—ky2

= sinh~'r -1

If the universe has no singularity in the past 1i.e.
steady state universes, t1+ -o is possible. If
‘igt/R(t) diverges as t, » -»or as t,» 0 if there is a
singularity, it 1is possible to receive signals sent
sufficiently early. If on the other hand

k,
th/R(t) exists, (2.13)
(]
the observer will be able to receive signals only from

particles that are within radius rH(to) or equivalently

proper distance

to Yy(te)
dy(t ) = CR(t ) j’dt'/R(t') = R(t ) jﬁdr//1-kr2
(o] © (2.14)
This 1is called the Particle Horizon. Whenever grows

faster than R'z'e as R> 0 particle Horizons will be

present.

If the greatest part of the t integral comes from
matter dominated era, then dH(to) can be worked out

analytically:
Rt ) -1 (2 -1)R(t )
d,(t ) = ——=—~2—  cCcos ' [1- 5% —T/R1LJ
N0T T RyH, V2ag-T 99 Rn
- 3/2
= 2/H0 (R(t)/RO)
= e==——— Cosh [1+ (1= Zgg)R(t)]
ROHO J1-2q0 dg R0



2

where q = -RR/R? is the deceleration parameter.

In the early part of the matter dominated era

R(t) << Ry
Therefore
8, (t) ~ R(t ) /2 /20e-1 [R_
RoHy Y235-1 Yag VR,
~ Hy' (ag/2)™V% (R(t)/Ry)? 2 (2.16)

when aq >1/2 the universe is spatially finite. Looking out
in any direction we can see particles out to a fractions of
the circumference L = 27 R

d, (t) (2g4-1)R
H o1 -1 (4. 0
L‘:E—T- = o Cos (1 qo RO ) (2:17)
When R reaches its maximum value
2q4R
R - 00 _
m
2q0-1
dm = 2 Ly (2.18)

and we are able to see the antipodes.

Just as there are some comoving particles that we
cannot see, there may in general be events that we shall
never see. An event that occurs at t1, L will become
visible at r = 0 at t given by

€ Y
Jﬁt'/R(t') - f};-/éﬁ-kr'z (2.19)
£ o

1



If the t' integral diverges as t + « or as t »T (the
time of next contraction) then it will in principle be
possible to receive signals from any event if we wait 1long
enough. On the other hand if

£ vax
j;t'/R(t') converges,
&
it will be possible to receive signals from events for
which
v , -
jhr//1—kr <C Jht'/R(t') (2.20)
o o

This is called the event Horizon. For k = 1

RCE ;) (205-1R(t )

- — m-cos™ ! f1- —% 2.21
dg(t,) W (2n - cos ” -} })(2.21)
for Q, < 1/2 R ~ t2/3 no event Horizon
a, = 1/2 R ~t no event Horizon
Eax
a, > 1/2 J;t/R converges event Horizon

Age of the Universe:

The Einstein equation in the matter dominated era can
be recast as

2 2 2
(R/RO) = Hy [1-2q0 + 29, (RO/R)]

R/Rg (2.22)
t = 1/Hg _{dx [1-2q4 + 294 (Rg/R)]

Thus the present age of the universe is



