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POTENTIAL THEORY PART I

Matts Essén






1. Preface

The first part of these notes were written to prepare the audience for lectures by
H. Aikawa on recent developments in potential theory and by A. Volberg on har-
monic measure. It was assumed that the participants were familiar with the theory
of integration, distributions and with basic functional analysis.

Section 2 to 8 give an introduction to potential theory based on the books (7]
and [29]. We begin by discussing two definitions of capacity. In the first case, the
capacity of a set is the supremum of the mass which can be supported by the set if
the potential is at most one on the set (cf. Section 5; also the remarks at the end of
Section 8.3). This definition is taken from L. Carleson’s book [7]: the book deals with
general kernels, takes us quickly to interesting problems but is short on details. In the
second case, the inverse of the capacity of a set is the infimum of the energy integral
if the total mass is one (cf. Section 8.1). This definition is taken from the book of
Landkof [29]. Landkof considers a—potentials and the corresponding a—capacity and
gives many details.

When discussing a—potentials in Section 8, we can often use results from the general
theory in the first six sections: it applies without change in the case 0 < a < 2. When
2 < a < N, where N is the dimension of the space, it is no longer possible to use the
definition in Section 5, since there is no strong maximum principle in this case (cf.
Theorem 4.3 and the remarks preceding Theorem 5.11). We can always use results
which do not depend on the strong maximum principle: we have therefore tried to
make clear what can be proved without applying this result.

In Sections 9 — 16, there is a survey of minimal thinness and rarefiedness. Minimal
thinness of a set E at infinity in a half-space is defined in terms of properties of
the regularized reduced function RF of a minimal harmonic function with pole at
infinity (cf. Section 11). A set E is defined to be rarefied at infinity in a half-
space D if certain positive superharmonic functions in D dominate |z| on E (cf.
Definition 12.4). Characterizations of these exceptional sets in terms of conditions of
Wiener type involving Greeen energy and Green mass appear here as Theorems 11.3
and 13.1.

In [2], Aikawa uses singular integral techniques to study problems in potential
theory. In Section 14, we consider Green potentials and Poisson integrals in a half-
space and carry through the program of Aikawa for these kinds of potentials.

In Section 15, we show that Green capacity and Green mass can in the Wiener-type
conditions be replaced by ordinary capacity. This is one of the starting points of the
work of Aikawa on “quasi-additivity” of capacity (cf. Section 16). There dre also
other interesting consequences (see the remark at the end of Section 15).

It was a pleasure to give these lectures. The participants were very active and
our discussions led to many improvements in the final version of these notes. I am
particularly grateful to Torbjorn Lundh for typing these notes using the ANS-IATEX-
-system. There has been a lot of interaction between us; many preliminary versions
have been circulated in the class and Torbjorn has with enthusiasm done a tremendous
amount of work.

These lecture notes are dedicated to the memory of Howard Jackson of McMas-
ter University who died in 1986 at the age of 52. Together, we tried to understand
exceptional sets of the type discussed in Sections 11-15.
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2. Introduction

Let us start with some “hard analysis” following Carleson’s book [7]. Let our
universe be RY, unless otherwise specified. We begin with a discussion of a family of
sets that we will use.

2.1. Analytic sets. Analytic sets can be seen as a generalization of Borel sets.
A situation where analytic sets arise is when you have a Borel set of a product space
X x Y and project this set on X. This new subset of X is not necessarily a Borel set
but it is always an analytic set.

Analytic sets have two properties in common with Borel sets: they are closed under
countable intersections and countable unions, but unlike Borel sets, analytic sets are
not closed under complementation.

A Borel set is always analytic, but an analytic set does not have to be a Borel set.
If the complement of an analytic set is analytic then it is a Borel set.

One property of analytic sets which is of importance in connection with capacities
is that for every finite Borel measure p and every analytic set A we have that the
outer measure of A is equal to the inner measure of A, i.e.

w'(A) = inf w(0) = il W(F) =t pu(A).

Here the O and F' denote open and closed sets, respectively. This convention is often
used in these notes. For a thorough discussion of analytic sets we refer to [8] or [10,
Appendix IJ. ‘

2.2. Capacity. Let f be a non-negative set function, defined on compact sets such
that f(F) < f(F») if F; C F, where Fy, F; are compact.
For E bounded we define,

(1) f(E) :=suppcg f(F), F compact. (f is an interior “measure”?.)
It follows that

(2) f(Er) < f(E) if By C E,.
Furthermore, we assume that

(3) f*(E) =limpmeo f*(En), En /" E, where f* is the outer “measure” defined by
f*(E) := info~g f(O), O open.

The following definitions can now be made,

DEFINITION 2.1. Capacity is a set function satisfying the above conditions 1,2 and
3.

DEFINITION 2.2. A set E is capacitable (with respect to f) if f*(E) = f(E).

THEOREM 2.3 ([7] PAGE 3). If compact sets are capacitable, then all analytic sets
are capacitable. ¢

As an example, let us study the following set function:

{1 B #£0,
f(E)‘{o if Bo = 0,

We now choose E = {0}, and will have f*(E) =1 but f(E) = 0; telling us that E is
not capacitable with respect to f.

1f need not be additive.



2. INTRODUCTION 5

2.3. Hausdorff measures. Let h be an increasing, continuous function from
[0, 00) to [0,00) and assume further that h(0) = 0. The classical choice is h(r) =
r%,8 > 0. If E is a bounded set in RN we can cover it by a sequence of balls, {B,},
where B, = B(z,,r,), i.e. a ball in RN centered at z, with radius r,. Having

E c U B, we define,

DEFINITION 2.4 (My(E)). My(E) = inf 3" h(r,), taken over all such coverings of
E.

With an extra condition on the size of the r,’s we also state,

DEFINITION 2.5 (A®P)(E)). A®P)(E) = inf ¥ h(r,), taken over all coverings of E
such that, E C U B, and supr, < p.

We see that A(P)(E) increases as p decreases to 0. This will finally lead to
DEFINITION 2.6 (THE CLASSICAL HAUSDORFF MEASURE).
An(E) = lim AP(E).

While studying Hausdorff measures it is perhaps worthwhile mentioning Hausdorff
dimension, which is a very important concept in the theory of fractals. If we let h(r) =
r° then A (E) := Ax(E) is the outer s-dimensional Hausdorff measure (restricted to
Borel sets E). We note that A,(F) decreases as s increases. There exists a s such
that,

_J oo if s €(0,s0),
A(E) = { 0 if s> sp.
sg is called the Hausdorff dimension of E, i.e. sp = dim(E). The Hausdorff dimension
coincides with the Euclidean dimension for the cases when sy € N; e.g. dim(line) =1
, dim(plane) = 2 and so on.

A non trivial example is the %—Ca.ntor set, which has Hausdorff dimension :%ﬁ% ~
0.6309. See [18] for further details on this subject. It is not always suitable to cover
our set E by balls; sometimes a net will do the work better , or at least differently.
To give a good definition of a net we first need to define the notion of a cube.

DEFINITION 2.7 (CUBE). A set of the form {z € R : a; < z; < b;} where b; — a;
is constant over the indices 1.

DEFINITION 2.8 (NET). A net is a division of RN into cubes {Q} all of the same
side-length L with sides parallel to the coordinate azis, such that the cube {z eRVN:
0 < z; < L} is in the net. Moreover we have UQ = R" and Q?ﬂQ_? =0ifi#7.

The dyadic refinement is a useful way to construct nets. Let G, be a net with
L = 27?. The next generation, G,4; is obtained from G, by dividing every cube in
G, into 2V subcubes each of side-length 27P~!. We can now form the family of all
dyadic cubes, G = {Gp}32 .

Consider now a set E covered by UQ,,Q, € G. The side-length of @, is 6, and we
define:

DEFINITION 2.9. my(E) = inf ¥, h(6,), for all such coverings UQ, of E.

Remark

e It does not matter if the balls {B,}, which were used in the definition of M,
are closed or open.
e It is a convention to let the cubes {Q,} be closed.
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FIGURE 2.1. A dyadic net under construction.

LEMMA 2.10. There are constants, C, and C, dependent only on the dimension,
N, such that

CiMy(E) < my(E) < CoMy(E).

PROOF. (of the last inequality.) Let us first consider the planar case (N = 2) . To
cover a ball of radius r by cubes, or in our case squares, we need at most 5 x 5 squares
of side-length 277 when 277 < r < 277+, See figure 2.2 for the geometrical argument.
If we now pick a sufficiently good ball covering of E, i.e. 3 h(r,) < My(E) + ¢, then
we have

mu(E) <253 h(r,) < 25My(E) + 25¢.

So we conclude that C3 can be chosen as 25 in the two—dimensional case. For N > 2
we just exchange 25 for 5V. The other inequality is treated in an analogous way. [

FIGURE 2.2. To cover a ball by squares.

THEOREM 2.11 (FROSTMAN 1935). Let 1 be a non-negative and sub-additive set
function such that

(1) w(B) < h(r) for every ball of radius r,
then
(2) w(E) < My(E).

Conversely, there exists a constant a, depending only on the dimension, such that for
every compact set F', there erists a measure p such that

W(F) > aMy(F)
and p satisfies equation (1).
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PROOF. First, we show the easy part, (1) = (2) . If £ C UB, then by covering
by balls we have u(E) < ¥ u(B,) < ¥ h(r,), the last inequality is just condition (1).
Now we can take infimum over such coverings and get u(F) < inf 3" h(7,), which is
(2).

The second part of the theorem will be proved for the planar case (N = 2). Fix a
large integer n and consider a net Gy, see figure (2.3). Define a measure, p, to have

| |
| M |

FIGURE 2.3. F is captured in a net, G,.

constant density on each @ € G,, and the value:

_ [ h@) iQNF £,
“"(Q)‘{o if QN F = 0.

Let us look at a lower level in the net, a larger square @ in G,_;. We will then have
two possibilities: either p,(Q) < h(27™*!) or 1,(Q) > h(27"*!). In the latter case we
change the measure by multiplying by a constant times the characteristic function of
Q, i.e. cxq, where c is defined by cu,(Q) = h(27™*'). This is done for every Q in
G,_1 and the resulting measure is called p,_;.

Continuing this way “down” in the net, we arrive after n steps at the measure .
We do know that the relation u,(Q) < h(27”) holds for every @ in G, for every v
in [0,n]. Since our resulting po depends on the starting level n, we indicate this by

writing u((,") instead of yg. It is then possible to find a weakly converging subsequence

of the sequence (u{"” 20

i.e.

us™ — .
It only remains to check that the resulting measure p has the right properties. It
is fairly easy to see that supp p C F and p(Q) < h(27%),VQ € G,, telling us that
condition (1) is valid. Furthermore, let ¢ > 0 be given, we can then choose a covering
{Q;},Qj € G so that F C UQ; and my(F) + € > 3 h(6;). Now, let n be large. For
each Q € {Q;} with side-length = §, we have two possibilities,

either u{™(Q) = h(6) or y_j w$(Qx) = h(5).

(The * indicates summation over all Qx C Q.) The total mass of ,u((',") is then bounded
below:

p(RY) > inf S A(8;).
The same inequality holds for the limit measure p. That is,

W(RY) > inf 3 h(5;),
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and it follows that
1(RN) > mu(F).

By the fact that supp p C F one concludes that u(F) > my(F). Using lemma 2.10
we finally observe

W(F) 2 mp(F) 2 aMy(E),
ending the proof. O

Claim. M,(FE) is an outer measure. That is, M,(E) = info5g Mx(O), O is open.
This is easy to see. Given an € > 0 there is a collection of (open) balls, {B,} such
that O =UB, , O D E and ¥ h(r,) < My(E) + € giving,

Mh((’)) +€2> Mh(E) +€2> Zh(r,,) > Mh(O)

Thus, My(FE) is an outer measure. What about m,(E)? It turns out that my(E) =

info5g my(O) is true when N = 1, but not necessarily for N > 2. The problem in

higher dimensions occurs due to the fact that it is necessary to add many more cubes

than we can control by an estimate of the contributed terms in the defining sum of
The following lemma is closely related to the above questions.

LEMMA 2.12 (N =1). lim,_,co mu(E,) = mu(E), E, / E.

PROOF. Take a sequence {¢,} to be defined later and let {w,,} be closed dyadic
intervals that cover E, such that ¥, h(6,,) < mu(E,) + €,. Then we pick, for every
z € E, the largest interval in the sequence, {w,»}, containing z and call it w. We
may also assume that 2i,,_ is not in E for any m, k € Z (just remove a countable set).
The different “non-intersecting” intervals w —countably many— that we obtain this
way, are denoted {w,} and have lengths {6, }.

An alternative way of constructing the sequence {w,} is the following; if w',w" €
{wyn} and w' C w" , then throw away w’. Keep on until we have denumerably many
intervals w, such that,

[o <IN o]

U U wim =Uws.

n=1lv=1
One also notes that w? and &,’ are disjoint if w, # w,. We have obtained a new
sequence by throwing away the smaller, already covered, sets. Obviously E, C UJw,.

Choose an integer n and consider those w,’s that are taken from {wy1}. They cover
a certain subset @Q; of E,. The same subset is covered by a certain subsequence of
{wyn} denoted {w,,}®) which is a sequence of subintervals of the chosen w,’s. We

now claim that
(1) (1) $

S h(64) <Y h(bun) + €1
To show this we assume the contrary and observe

PNICRES §): h(6,) + (“the rest”),

where “the rest” could be estimated from below by mx(E; \ Q1) . By the assumption,

we know that
(1) (1)

STR(64) > 3 h(bun) + €.
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Since {w,yn}*) covers Q; and therefore the smaller set Q; N E; we have the estimate
(1)
Z h(8un) = ma(Q1 ) E1).

We obtain, after putting it all together,

Zh(évl) > mh(Ql nEl) +€ + mh(El \Q]) =€ + mh(El),

which is the desired contradiction.

The next step is to consider the w,’s taken from {w,,} but not from {w,;}. Again,
we find X3 h(6,) < =@ h(6,n)+e€2. Repeat this argument for all coverings {w,x }7_,!
We obtain n inequalities that can be added, giving

n (k) n

S5 A6 < S hGum) + 3 6 < ma(Ba) + 3 6 + n.
k=1 v=1 v=1

If we now let n tend to infinity we will have

m(E) < 3 h(6,) < Jim ma(En) + Y.

v=1
Since Y 02, €, can be chosen arbitrarily small we find
my(E) < lim mp(Ex)
Trivially, we also have m,(E,) < my(E) concluding the proof. [J
Remark The same argument holds for N > 1. |

2.4. Is m, a capacity? Let us now specialize to the case when E, is compact
and E is open and bounded. Lemma 2.12 gives us then

(3) my(0) = sup my(F)

where F' is compact and O is open and bounded.
What about the other relation, the outer relation?

(4) ma(E) = inf mx(0), O open,
where E' is arbitrary. We know it is true for V = 1; but what happens otherwise?

EXERCISE 2.1. Find sufficient conditions on h so that equation (4) holds for each
set E inRN. What can we say when h(r) = rVN=* N > 2, or when h(r) = (log* 1)~} N =
2?7

Let us repeat the conditions for the set function f to be a capacity.

(1) f(E) :=sup f(F) for all compact F that are subsets of E. P

(2) f(E1) < f(Ep) if Ey C By

3) f*(E) =limp—co f*(En), where E, / E.

So, is fo := my, a capacity? We have only to check the last condition, the first is clear
due to lemma 2.12 and equation (3) and the second condition follows immediately
from the definition of my,.

Given E, /' E find nested open sets O, such that O, D E, and f3(0,) < f3(E.)+
€. Thus E = U E, C UO,. We then have fJ(E) < f3(UO,) but since U O, is open
f3UO,) = fo(UO,). Using lemma 2.12 gives us fo(UOn) = limp_o fo(On) but
this is bounded above by the assumptions on O, by lim,_. f3(E,) + €, giving us
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f3(E) < lim, . f§(E,) The opposite inequality is trivial. Hence the answer is yes,
fo :=my, is a capacity.

We turn now, impatiently, to the next question: “Are compact sets capacitable?”
Or in other words: “Is f*(F) = f(F)?” or, equivalently : “Does (4) hold?” The equiv-
alence follows immediately from the definitions of capacity f*(F) = infp~p my(O)
and f(F) = mp(F).

Remark: We can modify m, by slightly changing the meaning of “cover”. Let
{Q,} “cover” a set E if every z € E is an interior point of J@Q,. Then we define,

my(E) :=inf )_ h(6,),
where infimum is taken over all such coverings.

EXERCISE 2.2. Is equation (4) true with my, replaced by mj, ?
Is limm},(E,) = m,(E) as E, / E?

3. The Physical background of Potential theory

Behind the theory there are old and interesting questions about the physical reality
around us. The classical examples are the theories of gravity and electrostatics. More
information on this can be found in [35].

3.1. Electrostatics in space. Consider an electrically charged body, say nega-
tively charged. If we now look at a test particle nearby the body, we will find that
there is a force acting on the particle due to the presence of the charged body, see
picture 3.1. The force, F, on the test-charge is F' = ef(z,y, z), where £(z,y, z) is

:
Vd
€

FIGURE 3.1. A test particle, e, in an electric field

a vector field generated by the charged body. If we consider the special case where
the body is just a point—charge, with charge e > 0, at the location Z € R3, then the
electric field is given by the law of Coulomb’s.

)= 5" =1

. :;-(x —I). p

At the end of the 18th century it was observed by Lagrange that there exists a
scalar function, ¢, with

£=-Vop,
where ¢(z) = 5.

If we have several charges, with charge e; at z; the scalar function becomes ¢(z) =
L 2 The electrical field will still be £(z) = —Ve(z). Suppose now we have
charges continuously distributed over a body, rather than a finite set of point charges.
That is, suppose there is a continuous function p defined on the body 2 such that for
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every portion B of €, the charge in B is given by [ pdV. Then, ¢ = fn I= Y. for all

z € R®\ Q and as before, £= —V. The Laplacian can, in distributional sense, be
computed

Ap = —47p.

The scalar function ¢ is the potential function of £ and these functions will be studied
in the next section.

4. Potential theory
We need the fundamental solution of Laplace’s equation

logl if N=2
(I’(I)=¢(T)={

r*N if N > 3.

Here 7 = |z| and A® = —cyé with the constant ¢y > 0. Let now H : R — [0, 00) be
a continuous, increasing and convex function. (The convexity is not always essential
and this condition will later be removed in some cases.) We shall study kernels of the

form
K(r) = H(4(r))
and we will also assume integrability

/K(T)TN’1 dr < oo.
0
We allow ourselves to write K (z) = K(|z|) letting us write the above condition
/ K(z)dzr < .
[z]<a
With respect to K(r), we form the potential of the set function o

uo(2) = [ K(le = yl) doty),

and the energy integral

10) = [[ K(lz = y]) do(y) do(z)

or, using the newly defined potential,
I(o) = /u,(x) do(z).

The potential and the energy of course have physical origins; see [35].
Remarks: ¢

e There is a problem when N = 2 because log ﬁ changes sign , where z € C.
This will be studied later.

o If we allow K(r) = 7~V we will get something called an a—potential.
Let us look at an example of strange behavior of a potential in RN. Let u(z) =
L oty where {v:} is a dense set in RN, a; > 0,3 a; < 0o. We have then u € L}, but
u(y;) = oo! What are the sets {z : u(z) > A}?
From now on we will restrict ourselves to non-negative measures, p, with bounded
support. We have then the following lemma on the property of semi—continuity. First,
the definition,



