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Man, being the servant and interpreter of Nature, can do and understand so much
and so much only as he has observed in fact or in thought of the course of nature. Beyond this he
neither knows anything nor can do anything.

F. Bacon, Novum Organum, Aphor. 1
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Elzbieta and Barbara



Preface

In our contact with users of infrared systems we were frequently asked, ‘How do you estimate
the accuracy of infrared thermography measurements, or how accurate are the data used from
thermography measurements, for example, in the analysis of the temperature field of selected
objects by the finite difference method (FDM), the finite element method (FEM) or
the boundary element method (BEM) (Ozisik, 1994, Minkina, 1994, Minkina, 1995, Minkina,
2004, Astarita et al., 2000, Hutton, 2003)?’

The answer to such a question is not straightforward, so we decided to write this book, which
is intended to deal with the problem in depth. It is worth underlining that the problem has not yet
been fully solved in the literature. Authors, be they physicists, architects, mechanical
engineers, power engineers or computer scientists, describe it in different ways, depending
on the scientific field they represent. In this monograph we deal with the problem comprehen-
sively, in accordance with international recommendations as published in the Guide to the
Expression of Uncertainty in Measurement (Guide, 1995, Guide, 2004). This work is the first
to deal with the issue in this manner. It is an extension and complement of the study presented in
§10 of the monograph by Minkina (2004).

This book also aims to explain the many misunderstandings in the interpretation of
temperature measurements and feasible metrological evaluation of commercially available
infrared systems.

The first misunderstanding is the wrong interpretation of the Noise Equivalent Temperature
Difference (NETD) parameter, published in catalogs as thermal sensitivity and interpreted
sometimes as a parameter related to the precision of an infrared thermography measurement. In
fact, the NETD parameter is rather for marketing purposes and says little about the actual error
of a measurement. This parameter has an effect only on the quality of a thermogram, because it
guarantees better uniformity of signals acquired from the particular detectors of the detector
array. In practice, it can only give information on the error of temperature difference between
two points of a given area of uniform emissivity, measured by the same pixel of a multipixel
array (matrix) of detectors in idealized measurement conditions of short camera-to-object
distance and no external sources emitting disturbing radiation. It takes place when the
measurement model stored in the camera’s microcontroller memory is fulfilled and the model
parameters (€., Tyim» T, , d) are entered with zero error. Of course, it is difficult to conduct
such a measurement in reality.

The second misunderstanding is the wrong interpretation of another parameter published in
catalogs: namely, the accuracy of a thermography measurement. This accuracy is associated
firstly with the quality of calibration of the array detector (Minkina, 2004). The better the
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calibration (i.e. the more accurate the bringing of the static characteristics of individual
detectors to the same common shape), the smaller the measurement error. Secondly, the
measurement accuracy is affected by calibration conducted by the camera manufacturer.
Parameters (R, B, F) of the static characteristic of the measurement path determined during
calibration are obviously burdened with errors. Therefore, if in a catalog this error is given as
+2°C, £2%, then for a given measurement range the larger of the two values should be taken.
For example, for a measurement range of 0—100 °C we should take 42 °C, while for a range of
100-500 °C we should take +2%. As before, the error value refers to idealized measurement
conditions: that is, an adequate measurement model stored in the microcontroller memory and
zero errors in the entered model parameters. Under actual conditions (e.g. for a long camera-to-
object distance or in the presence of external radiation interfering with the object radiation), the
error can be many times greater. In extremely difficult atmospheric conditions, non-contact
temperature measurement is not possible at all.

The uncertainty analysis of thermography measurement using analytic methods is very
difficult because it involves a complex form of the model (Dudzik, 2005, Minkina, 2004).
Therefore, for the uncertainty analysis of the processing algorithm in this work, we use the
numerical method for the propagation of distributions recommended by Working Group No. 1
of the BIPM (International Bureau of Weights and Measures) (Guide, 2004). The uncertainty
analysis was carried out for correlated as well as for uncorrelated model input variables. It
allowed for quantitative evaluation of the influence of individual factors on the expanded
uncertainty of infrared camera temperature measurement.

From a terminology perspective, this can be explained using various concepts. In the literature,
besides ‘thermovision’ the term ‘thermography’ is often used. As the measurements are often
computerized, the term ‘computer-aided thermography’ is used as well. ‘Thermography’ can be
understood as the older technique (e.g. the recording of thermal images on heat-sensitive paper
with a thermograph). In this method, firstly the image is obtained and next, observations are
taken. Additionally, ‘thermography’ suggests that we describe graphic systems rather than vision
systems. In the English literature, ‘computer-aided thermography’ is often used. Contemporary
thermal imaging systems are called infrared cameras. Sometimes they can be called thermo-
graphs as well. Therefore, it seems that the terms ‘thermography’ and ‘thermovision’ can be
treated interchangeably; in this book, however, the first of these terms is preferred.

The material presented is divided into six chapters. Chapter 1 gives the reader an
introduction to the theory of error and uncertainty. Chapter 2 deals with the basic issues of
measurements in infrared thermography, such as the law of heat exchange by radiation and
emissivity. In Chapter 3 we describe a typical processin g algorithm of the measurement path as
well as a generalized model of the temperature measurement of the example of FLIR’s
ThermaCAM PM 595 LW infrared camera.

It is necessary to emphasize that, for other types of infrared cameras and manufacturers, the
results and conclusions will be very similar.

Chapter 4 deals with the issue of the measurement error analysis of an infrared system,
performed using classic methods. In Chapter 5 we describe the results of simulation research
on the uncertainty in measurement in the infrared thermography obtained, using numerical
methods for the propagation of distributions.

Waldemar Minkina and Sebastian Dudzik
Czestochowa, 2009
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Glossary

Absolute error of a measurement is the difference between measured value ¥ and actual
value y.

Absolute error of a measurement model in infrared thermography is the difference between
value T calculated by the camera measurement path algorithm for a single element (pixel)
of the array detector and actual temperature Ty of the surface area mapped (represented) by
this element.

Accuracy (of measurement) is a maximum deviation, expressed as % of scale or in degrees
Celsius, that the reading of an instrument will deviate from a correct standard reference.

Black body, black body radiator is a body that absorbs all incident radiation. From Kirchhoff’s
law it follows that a black body is also a perfect radiator. The emissivity of a black body is
equal to one.

Bolometric detectors are resistors of very small heat capacity with a large, negative tempera-
ture coefficient of resistivity.

Calibration is a procedure for checking and/or adjusting an instrument. After calibration, the
readings of the instrument will agree with a standard. Calibration removes instrument
systematic error but is not able to remove random errors.

Combined standard uncertainty u(y) is the positive square root of the combined variance
u;(y), defined as u?(y) = YN | (9f/0x:)® 12 (x;), where y — fxy, X2, ..., x,) is the
measurement model function and u*(x;) is the variance of the ith input of the model.

Confidence level(l —a) is a value of probability associated with a confidence interval
or statistical coverage interval.

Data processing algorithm uncertainty is a measure of the spread of an output random
variable, equal to the standard experimental deviation of this variable.

Emissivity € of abody for the full radiation range, called the total emissivity, is the ratio of full-
range radiant exitance of that body to full-range radiant exitance of a black body at the same
temperature.

Expanded uncertainty U is the uncertainty obtained by multiplying combined standard
uncertainty u.(y) by expansion factor k:U = ku,(y).

Expected value E(X) of a discrete random variable X, whose values X;appear with probabilities
Pi s E(X) =" pix;.

Field of view (FOV) is an area that can be observed from a given distance d using the optics
installed on an infrared camera.

Gray body is an object whose emissivity is a constant value less than unity over a specific
spectral range.
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Instantaneous field of view (IFOV) is the field of view of a single detector (pixel) in a detector
array.

Limiting error is the smallest range around the measured value y containing actual value y.

Luminance or brightnessL, is the surface density of luminous intensity in a given direction.

Luminous intensity I, is the light flux in a given direction per unit solid angle.

Method of increments (exact method) consists of determining the increment of a measurement
model function for the known increments of input quantities (i.e. absolute errors).

Method of total differential (approximated method) is based on the expansion of a measure-
ment model function in a Taylor series around the point defined by the actual (true
conventional) values of the inputs.

Monochromatic emissivity &; is the ratio of monochromatic radiant exitance M (A1) of a
body at a given wavelength 4 to monochromatic radiant exitance M(4,T) of a black body at
the same wavelength, the same temperature and observed at the same angle.

Noise equivalent power(NEP) is the RMS (Root Mean Square) power of incident monochro-
matic radiation of wavelength A that generates an output voltage whose RMS value is equal
to the level of noise normalized to unit bandwidth.

Noise equivalent temperature difference (NETD) is the difference between the temperature of
an observed object and the ambient temperature that generates a signal level equal to the
noise level.

Non-gray body is an object whose emissivity varies with wavelength over the wavelength
interval of interest.

One-sided coverage interval: if T is a function of observed values, such that for
estimated parameter of population 6, probability Pr(T > 0) or Pr(T<0) is at least equal
to (1 — ) (where (1 —a)isa fixed number, positive and smaller than one), then the interval
from the smallest possible value of 6 to 7 (or the interval from 7 to the biggest possible value
of ) is the one-sided coverage interval  with confidence level (1 — ).

Pyroelectric detectors are built from semiconductors that exhibit the so-called pyroelectric
effect.

Quantile of order B of a probability distribution described by cumulative distribution function
G(m) is such that, for a value 7 of the random variable, equality G(n) = B is satisfied. This
means that the probability of occurrence of this value is equal to .

Radiant exitance (emittance) is the ratio of (temperature- and wavelength-dependent) radiant
power (radiant flux) d& emitted by an arbitrarily small element of surface containing the
considered point to a projected area dF of that element.

Radiant intensity is the radiant flux per unit solid angle.

Random error is the difference between the result of an individual measurement and the mean
value calculated for an infinite number of measurements of a quantity, carried out under the
same conditions.

Relative error of a measurement is the ratio of the absolute error to the actual value.

Relative error of a measurement modelin infrared thermography is the ratio of absolute error
Ar,, to actual temperature Tg.

Response rate is a parameter determined by the detector’s time constant.

Slit response function (SRF) is a parameter that, similar to IFOV, describes the capability of a
camera with an array detector to measure the temperature of small objects.

Standard deviation o(X) of a random variable is the positive square root of the variance.
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Standard uncertainty of a measurement is the uncertainty of that measurement expressed in
the form of the standard deviation.

Systematic error (bias) is the difference between the mean value calculated for an infinite
number of measurements of a quantity — carried out under the same conditions — and its
actual value.

Temperature sensitivity is a parameter that determines change of signal per unit change of
temperature for object temperature T,, = T,,.

Thermopile detectors are built as a thermopile, that is a system of thermoelements connected in
series.

Type A standard uncertainty is the standard uncertainty determined on the basis of the
observed frequency distribution.

Type B standard uncertainty is the standard uncertainty determined on the basis of a frequency
distribution assumed a priori.

Uncertainty of a measurement is a parameter characterizing the spread of measurement values
that can be assigned to the measured quantity in a justified way.

Voltage or current (spectral) sensitivity is a ratio of the RMS value of the first harmonic of
a detector output voltage (current) to the RMS value of the first harmonic of incident
radiation power.
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1

Basic Concepts in the Theory
of Errors and Uncertainties

1.1 Systematic and Random Errors

In modern measurement systems we can observe, along with growth of complexity, the
evolution of measurement methods to estimate accuracy. On one hand, this is a consequence of
the increasing complexity of measurement models: the number of input quantities increases
and dependencies between inputs and outputs become more and more complicated. It makes it
difficult to estimate accuracy with the use of classical methods that employ analytical
descriptions. On the other hand, technical progress enables better insight into physical reality,
which, among other things, involves changes to definitions of units of measure, which are the
basis of each metric system. For example, consider how the definition of the meter has evolved
over the last two centuries (Www.gum.gov.pl):

1793: The meter is 1/10 000 000 of the distance from the equator to the Earth’s North Pole
(i.e. the Earth’s circumference is equal to 40 million meters).

1899: The meter is the distance, measured at 0 °C, between two engraved lines on the top
surface of the international prototype meter standard, made of a platinum—iridium bar
(102 cm in length) with an H-shaped cross-section.

1960: The meter is equal to 1650763.73 wavelengths of the orange-red radiation of the
krypton-86 isotope.

1983: The meter is the distance traveled by light in vacuum in 1/299 792 458 seconds.

For the evaluation of measurement accuracy, it is necessary to define basic theoretical
concepts of error and uncertainty. Below we present definitions of the measurement error for a
single value of a measured quantity.

The absolute error of a measurement is the difference between measured value ¥ and actual
value y:

Ay =y—y. (1.1)

Infrared Thermography: Errors and Uncertainties Waldemar Minkina and Sebastian Dudzik
© 2009 John Wiley & Sons, Ltd



