STRUGCTURED

ANN

‘ ‘ second edition

William M. Fuori
Stephen J. Gaughran -




>

edition

Structured
ANS COBOL
Programming

WILLIAM M. FUORI, Ph.D., C.D.E.
STEPHEN GAUGHRAN, M.B.A,, C.D.P.

Nassau Community College
New York

Prentice-Hall, Inc.
Englewood Cliffs, New Jersey 07632




Library of Congress Cataloging in Publication Data
Fuori, WiLLiaM M.
Structured ANS COBOL programming.

Rev. ed. of: Introduction to American national
standard COBOL. 1975.
Includes index.
1. COBOL (Computer program language) 2. Structured

progr I. Gaughran, Stephen. 11. Fuori, William M.
Introduction to American national standard COBOL.

III. Title.

QA76.73.C25F86 1984 001.64'24 84-2100

ISBN 0-13-854430-1

Editorial/production supervision and
interior design; Aliza Greenblatt

Cover design: Celine A. Brandes

Manufacturing buyer: Gordon Osbourne

The authors would like to thank IBM
for reproduction of their business forms.

©1984, 1975 by Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Previous edition published under the title of
Introduction to American National Standard COBOL

Printed in the United States of America
10 9 8 7 6 5 4 3 2 1

ISBN 0-13-854430-1

PRENTICE INTERNATIONAL, INC., London

PRENTICE-HALL OF AUSTRALIA PTY. LIMITED, Sydney
EDITORA PRENTICE—HALL DO BRASIL, LTDA., Rio de Janeiro
PRENTICE-HALL CANADA INC., Toronto

PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi
PRENTICE-HALL OF JAPAN, INC., Tokyo

PRENTICE-HALL OF SOUTHEAST ASIA PTE. LTD., Singapore
WHITEHALL BOOKS LIMITED, Wellington, New Zealand



In memory
of my beloved mother
-William M. Fuori

To my wife Claire,
and to my children Stephen T., Maureen,
Kathleen, Patricia, Sheila, and Colleen

-Stephen Gaughran



WHAT IS COBOL?

INSTRUCTIONAL
FEATURES

Standard COBOL

vii

Preface

With the introduction of the computer into the business world in the early 1950s came the
need for a standardized business-oriented programming language. To ensure the universal
applicability of this language, a committee (CODASYL, for the Conference On DAta
SYstems Languages) comprised of computer manufacturers, government agencies, and
commercial users was formed and charged with developing a standardized business-
oriented language. In 1959 this committee began meeting to develop COBOL (COmmon
Business Oriented Language), a language that would not be identified with any computer
manufacturer and that therefore would offer advantages to both government and commer-
cial users.

In 1968 the American National Standards Institute (ANSI) documented the COBOL
specifications, agreed on by representatives from interested groups. In 1974 ANSI pub-
lished a revised COBOL standard that incorporated the suggestions of computer manufac-
turers and users since the previously published standard was issued.

The 1974 changes have been implemented by most manufacturers. However, some
manufacturers still have not completely implemented these specifications and most manu-
facturers are currently in the process of implementing the latest changes. It is therefore,
important that the reader verify exactly which specifications are supported by his or her
compiler before attempting to use them.

The latest set of changes proposed by ANSI in 1981 is currently in its final stages of
acceptance and has been included in Appendix C.

The entire format of this text is based on firsthand classroom experience and on the many
suggestions made by COBOL instructors, students, and business people. The instruc-
tional features in Structured ANS COBOL Programming, 2/E are perhaps the most inno-
vative and constructive ever presented in a COBOL textbook. They provide students with
anew approach to learning COBOL by giving them practical application of what has often
been considered difficult and abstract material.

The text includes a comprehensive discussion of each of the major COBOL language
statements. Then to accommodate students or programmers who must prepare for the
changes that will be required to convert from a COBOL compiler based on 1974 COBOL



Straightforward
Presentation

Abundant Exercise
and Self-Testing
Material

Manufacturer-
Independent
COBOL

CONTENTS

viii

standard to one based on the 1981 proposed revision of the standard, a summary of the
changes is provided in Appendix C.

In this textbook straightforward presentation has two meanings. First, it means that the
COBOL language statements are presented in a manner that makes them easy to under-
stand. Second, it means that students are introduced very early to the basic requirements
and procedures of the COBOL language. For instance, the students are introduced to the
ACCEPT (for reading in data) and DISPLAY (for writing out data) clauses early in the
text (Chapter 3). This early introduction will allow them to write almost immediately a
simple but complete program.

Once students have gained the confidence that comes from having successfully writ-
ten a few simple but complete COBOL programs, they will be better prepared to under-
stand the conceptually more difficult material that follows. In this ‘‘learning by doing”’
approach, students advance step by step from the simple to the complex.

After mastering the basic COBOL concepts, students are assigned more detailed
and thought-provoking programming exercises. Some of these programming assignments
include the more sophisticated aspects of COBOL programming, such as table handling,
disk operations, and the SORT feature.

The exercises in this textbook fall into two categories. First, there are Self-Tests that are
referenced throughout each chapter. These Self-Tests are carefully placed to allow the
reader to test his or her understanding of the foregoing material.

Second, there is the exercise material which appears at the end of each chapter.
These exercises, which include true—false questions, multiple-choice and completion
questions, and items for discussion, cover all the material in their respective chapters,
including those areas covered by the Self-Tests. In this manner, students are given a sec-
ond opportunity to strengthen their knowledge of the subject.

In this end-of-chapter exercise material, there are other exercises deserving special
attention. Perhaps, more than any one feature, these exercises, called ‘‘Problems’’ and
“‘Programs,’’ allow the student to apply his or her accumulated knowledge to comprehen-
sive problems and in the solution of real-life business situations. Sample problems might
ask the student to contrast the various file organizations while sample programs might
require a student to write a program on current sales data for the sales representatives for a
particular company or to write a program to handle an airline passenger reservation sys-
tem. These are problems similar to those actual problems that the student will encounter in
the business world.

All programming examples and assignments have been compiled and executed on a
computer to ensure that they are ‘‘working’’ programs. The computer listings themselves
are reproduced in the text for programming examples and in the instructor’s manual and
key for programming assignments.

Structured ANS COBOL Programming, 2/E is written independent of any one computer
system. However, there are sections in the text that refer to the IBM enhancements to the
COBOL standard. These enhancements are identified as such, since they are not generally
supported by the COBOL compilers of other computer manufacturers. Thus, students or
programmers using an IBM computer system can take full advantage of that particular
system, and students or programmers using another computer system can easily distin-
guish between the instructions pertaining only to the IBM system and those pertaining
only to their system.



Terminal or Batch-
Oriented

ORGANIZATION AND
CONTENT

INSTRUCTOR'’S
MANUAL AND KEY

As most colleges and businesses now support interactive COBOL facilitating the entry-
,compilation, and execution of COBOL programs via terminal, the exercises in this text
are designed so that they can be completed on either a batch system or an interactive
system.

Structured ANS COBOL Programming, 2/E is organized into six text units, which are
divided into 13 chapters, and a seventh unit which provides supplementary information in
Appendixes A through E.

Unit I (Chapters 1 and 2) introduces the student to American National Standard
COBOL and its basic structure. The student learns why the COBOL language came into
being, how the language is structured, and what takes place during a COBOL compilation
(the translation of the COBOL statements into machine-executable code).

Unit II (Chapters 3 and 4) introduces the student to those statements minimally nec-
essary to write a simple COBOL program. In Chapter 3, the student learns to input and
output discrete data utilizing the ACCEPT and DISPLAY statements. These statements
are ideally suited to systems that input and output data via terminal. Chapter 4 follows up
with the COBOL concepts and statements necessary to facilitate the input and output of
files. The PERFORM statement is presented in this chapter so that structured
programming can be introduced as early as possible.

Unit III (Chapters 5 and 6) are concerned with the arithmetic operations and branch-
ing statements, respectively.

Unit IV (Chapters 7 and 8) is concerned with some advanced COBOL statements
and concepts. For example, Chapter 5 explains and illustrates the USAGE, SYNCHRO-
NIZED, JUSTIFIED, BLANK WHEN ZERO, and advanced PICTURE clauses as well
as introducing the EXAMINE, INSPECT, STRING, UNSTRING, and COPY state-
ments. Chapter 6 introduces the table-handling features of COBOL.

Unit V (Chapters 9, 10, and 11) discuss the principally used file organizations and
access methods both conceptually and from a practical programming point of view. Com-
plete programs are provided to illustrate how to create, update, and process sequential,
direct, and indexed (ISAM and VSAM) files.

Unit VI (Chapters 12 and 13) introduce the COBOL SORT and MERGE features as
well as the construction and accessing of subprograms in COBOL.

Unit VII (Appendixes A through E) contains supplementary materials that can be
used throughout the text at the instructor’s discretion. Included are detailed presentations
on debugging of a COBOL program (Appendix A), documenting a COBOL program (Ap-
pendix B), the changes proposed by ANSI in 1981 (Appendix C), the General Formats of
COBOL statements for quick student reference (Appendix D), and the ANS 1974, 1981,
and IBM enhanced COBOL reserved word lists (Appendix E).

Because the emphasis of the text is on programming rather than on the COBOL
language statements taken individually, there is a continuity from one chapter to the next.
Within each unit the student comes to view the topics as a meaningful whole instead of a
series of seemingly disjointed topics. The successful classroom field-testing of Structured
ANS COBOL Programming 2/E with both business and data processing majors confirms
that this textbook’s approach to learning provides the COBOL student with an interesting,
informative; and easy-to-read set of instructional materials and the COBOL programmer
with a convenient, up-to-date reference on COBOL programming.

An instructor’s manual and key is available to instructors in education and industry using
the text. Particularly valuable as an aid in structuring the COBOL course to fit the inter-
ests and backgrounds of the students, this manual suggests methods of presentation re-



sulting from the classroom field-test of Structured ANS COBOL Programming, 2/E. The
detailed lecture notes that are a feature of this manual include suggested discussion ques-
tions. The instructor’s use of these materials will assure maximum coordination between
the lectures and the reading and study assignments.

The detailed solutions provided for each end-of-chapter exercise include a computer
listing for each exercise requiring the student to write a computer program. A feature of
special importance to the instructor is the inclusion of sample input data and the resultant
output for each programming exercise. This relieves the instructor of having to make up
test data and of having to write the program in order to be aware of the desired output.

ACKNOWLEDGMENTS

Many instructors and students aided in the development of the manuscript for Structured
ANS COBOL Programming, 2/E. 1 would like to thank, Professors Joseph Pacilio and
Dominick Tedesco for their invaluable assistance and constructive criticism.

The following information is reprinted from American National Standard
Programming Language COBOL, published by the American National Standards Insti-
tute, Inc.

COBOL is an industry language and is not the property of any company or group of
companies, or of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the CODASYL
Programming Language Committee as to the accuracy and functioning of the programming
system and language. Moreover, no responsibility is assumed by any contributor, or by the
committee, in connection therewith.

The authors and copyright holders of the copyrighted material used herein

FLOW-MATIC (Trademark of Sperry Rand Corporation), Programming for the Univac
® I and II. Data Automation Systems copyrighted 1958, 1959, by Sperry Rand Corpora-
tion; IBM Commercial Translator Form No. F28-8013, copyrighted 1959 by IBM; FACT,
DSI 27A52602760, copyrighied 1960 by Minneapolis-Honeywell.

have specifically authorized the use of this material in whole or in part, in the COBOL speci-
fications. Such authorization extends to the reproduction and use of COBOL specifications in
programming manuals or similar publications.

For a complete record of the COBOL standard and specifications, the reader is
referred to American National Standard Programming Language COBOL, American Na-
tional Standards Institute, Inc., New York, 1974.

William M. Fuori
PREFACE Stephen Gaughran



UNIT 1

CHAPTER

UNIT 2

CHAPTER

UNIT 3

CHAPTER

UNIT 4

CHAPTER

Contents

Preface

Acknowledgments

Background to COBOL

General Concepts

COBOL Fundamentals

Introduction to COBOL Programming

Writing a Simple COBOL Program

Programming with Files

Arithmetic/Logic Statements

Arithmetic Operations

Branching Statements

Advanced COBOL Concepts

Advanced Topics

Table Handling

vii

18

35
76

124
158

201
243



UNIT 5

CHAPTER 9
10
11
UNIT 6
CHAPTER 12
13
UNIT 7
APPENDIX A
B
C
D
E

CONTENTS

Vi

Programming Using Mass Storage Media

Programming Using Magnetic Tape Files

Direct Access Storage Concepts and File
Organizations

Programming with Direct Access Storage Devices

COBOL SORT/MERGE and Subprograms

COBOL SORT and MERGE Features
Subprograms in COBOL

Supplementary Materials

Debugging a COBOL Program
Documenting a COBOL Program
ANS COBOL 1981 Changes
General Formats

COBOL Reserved Word List

Index

281

307
330

373
400

411
422
431
438
456
465



General Concepts

COBOL ADVANTAGES AND FEATURES

PROBLEMS SUITABLE FOR COMPUTERIZED SOLUTION
DEFINABLE
REPETITIVE

VOLUME OF STORAGE OR CALCULATIONS
COST-JUSTIFIABLE

THE PROGRAMMING PROCESS

PROBLEM ANALYSIS
PROGRAM DESIGN

CODING, EXECUTING, AND DEBUGGING THE PROGRAM
DOCUMENTATION

AFTER THE COBCL PROGRAM IS WRITTEN



cOoBOL
ADVANTAGES
AND FEATURES

UNIT 1
BACKGROUND
TO COBOL

The introduction of the computer to the business world brought with it many new and
complex problems. Prior to this time, computers had been used only for scientific pur-
poses. Consequently, computer manufacturers and users were faced with developing a
data processing system that would be usable on these existing computers and at the same
time would be applicable to the newer, larger, and more powerful computers with mini-
mal conversion, reprogramming, and retraining costs. They were also faced with devel-
oping a single business-oriented computer language that would be usable on most
medium- and large-scale computers to replace diverse computer languages that varied ex-
tensively from one computer manufacturer to another. Also, the average programmer
would have to be able to write a program in a reasonably short period of time using this
language which, to some extent, would be self-documenting. As this language was to be
heavily used in business, it would have to be one that noncomputer-oriented personnel,
such as accountants and auditors, could read and understand with a reasonable amount of
training.

To fulfill these needs, development began on a suitable and standardized commer-
cial programming language. In May 1959, a committee of computer users was formed—
consisting of computer manufacturers, representatives of the federal government, and
other interested parties—and named CODASYL (Conference On DAta SYstem
Languages).

In April 1960, the committee produced a report titted COBOL (COmmon Business
Oriented Language). A CODASYL COBOL Maintenance Committee was formed and
charged with the responsibility for making needed modifications to the language. In order
to make this language universally acceptable to the business community, this founding
group granted unrestricted use of the language specifications to all users.

COBOL was received with tremendous success in the business field and it was ap-
parent that this language was to have a long and bright future. Realizing this, USASI
(United States of America Standards Institute) set out to produce COBOL specifications
that were to be consistent with CODASYL specifications and were to be used as the
standard COBOL by computer manufacturers. In August 1968, their efforts resulted in
USASI COBOL or, as it is now known, ANS (American National Standard) COBOL. A
more recent revision to the ANS COBOL specifications published late in 1974 is shown in
Appendix D compared with the enhanced specifications supported by IBM’s OS Full
ANS COBOL Compiler. The 1981 proposed revisions appear in Appendix C.

One of the most significant changes of concern to programmers in general was the
introduction of top-down program design. This revolutionary program design concept
changed the emphasis from how to code a program to how to design a program prior to the
actual coding so that the program will be as error free, reliable, and easy to read, modify,
and maintain as possible. This method of program design is discussed in greater detail
later in this chapter and is used throughout this text.

To verify your understanding of the preceding material, turn to page 14 and take
Self-Test 1-1.

The COBOL language is an easy-to-learn, easy-to-read, high-level programming lan-
guage designed principally for use in business or commercial applications. Some of the
advantages and features of this language are:

1. COBOL programs are written using precise, easily learned English words and
phrases.

2. COBOL is usable on virtually every computer manufactured because it is a univer-
sally accepted standard language.

3. COBOL programs written for use on one computer are usable on other computers
with a minimum of change.



PROBLEMS
SUITABLE FOR
COMPUTERIZED
SOLUTION

Definable

Repetitive

Volume of Storage
or Calculations

4. COBOL programs are written utilizing common business terminology and are there-
fore easily read by nonprogrammer personnel such as accountants, auditors, or busi-
ness executives with only a minimal background in data processing.

5. COBOL is easily learned by individuals who do not have extensive training in high-
level mathematics.

6. COBOL facilitates program testing so that, if necessary, programs can be tested
efficiently and thoroughly by individuals other than the original programmers.

7. Documentation of a COBOL program is relatively simple. In many cases, the
COBOL program itself provides much of the total documentation required.

8. Provisions are provided for the updating of the COBOL language.
9. It is suited to top-down program design techniques.

A review of some relatively simple but important concepts will show what program-
mers must know and understand before they attempt to use a sophisticated language such
as COBOL. These concepts may be reviewed by answering the following three questions:

1. What types of problems are suitable for computerized solution?
2. What general steps must programmers take when creating a COBOL program?

3. What happens after the COBOL program is written but before it is run on the com-
puter to produce the desired output?

In today’s automated world, when people are faced with the task of solving an analytical
problem, they often turn to a computer for help. However, some problems lend them-
selves more to a computerized solution than others. Those problems for which a computer
is ideally suited generally have the following characteristics:

Definable

Repetitive

Volume of storage or calculations
Cost-justifiable

ol ol S =

It must be possible to clearly state the problem in terms of objectives that can be reached
as the result of a series of logical and arithmetic steps. A computer, however, is limited in

the types of operations that it can perform; the type of application to which it can be ap-
plied is also limited.

The application or task should be one that will be performed again and again. A typical
example of a repetitive task is the generation of a company’s weekly payroll; the same
computations are required to produce the paycheck for each employee in the company,
with only the actual numbers varying. This type of application is also repetitive in that it is
executed many times in a given time span—>52 times a year. For applications that are
repetitive, the cost of preparing, writing, and documenting a program for a computerized
solution is spread over the program’s period of use. In addition, the boredom factor—
experienced by people performing repetitive and monotonous tasks—is nonexistent for a
computer.

An application suitable for a computerized solution generally requires large quantities of
data to be stored or processed and numerous logical or arithmetical calculations to be per-
formed by the computer. Applications not requiring a volume of storage or processing can
often be accommodated more easily and economically by a manual or other system.



Cost-Justifiable

THE PROGRAMMING
PROCESS

Problem Analysis

UNIT 1
BACKGROUND
TO COBOL

4

The end result—the knowledge gained, the data or output created, the money or time
saved—must justify or substantiate the cost of preparing, writing, and executing a pro-
gram for computing the solution. Employing a computer to solve a problem will not al-
ways result in a saving of time or money. Many menial tasks can be performed more
economically by noncomputerized devices.

Once a given application is found to be suitable for a computerized solution, the
preparation for the construction of a computer program can begin.

To verify your understanding of the preceding material, turn to page 14 and take
Self-Test 1-2.

A substantial amount of preparation is necessary before the actual programming of an
application can begin. The programmer must be concerned with such items as what func-
tions are to be performed by the program; what input data will be provided; what the form
of the input data will be; what output medium will be used; and what data is to be output
from the program. These questions represent some of the many questions to be answered
before the programmer can begin to write down the first instruction in the program. The
programmer must not only be able to view the problem as a whole but also possess a
detailed understanding of each of its component parts. This is done with a constant
awareness of both the capabilities and the limitations of the computer. In general, the
programmer subdivides the programming task into four areas:

Problem Analysis
Program Design
Coding, Executing, and Debugging the Program

AW N -

Documentation

The first step the programmer takes in preparing an application for programming is to
analyze the problem. This analysis begins with the studying and clarifying of the state-
ment of the problem. Initial problem statements are generally somewhat vague and
imprecise for a number of reasons. Sometimes the terms used in the statement of the prob-
lem cannot themselves be stored or maintained by computer (temperature, pressure, deb-
its, etc.); other times the problem statement tacitly relies on the capabilities and common
sense of the human reader; while still other times, the exact requirements of the problem
have not been completely formulated by the user.

In any event, the programmer with the help of the originator of the problem must
eliminate any vagueness, imprecision, or ambiguity in the problem statement so that he or
she may formulate a precise list of program objectives. On other than the most trivial of
problems, a systematic analysis of the requirements, and design of the overall structure of
the program, should precede any attempt to write program statements. It is convenient to
view this process as a top-down or level-by-level analysis of the problem. The top level is
the initial statement of the problem; the bottom level is the complete program; the number
of intervening levels depends on the complexity of the problem. The levels occurring after
the initial level are generally designed to:

1. Break up big problems into smaller ones—which in turn are broken up into even
smaller ones.

2. Reduce the program objectives from English to programming terms—convert
“‘find,”” solve,”” and so on, to ‘‘read,’” “‘print,”” ‘‘repeat,’”’ and then eventually to
READ, WRITE, PERFORM—the statements of a programming language.

This process can be carried out informally or in accordance with certain established
techniques such as HIPO (Hierarchy plus Input-Processing-Output). Although this proc-



CHAPTER 1
GENERAL
CONCEPTS

5

ess may often be carried out informally, we shall briefly consider HIPO for purposes of
illustrating one of the formal procedures used.

HIPO, originally designed as a documentation tool, has become a useful tool of
program design as well. The major objectives of techniques such as HIPO in program
design and documentation are:

1. State the functions to be accomplished by the program.

2. Provide an overall structure or hierarchy by which the individual functions of the
program can be understood.

3. Provide a visual description of the input to be used and the output to be produced by
each function.

To accomplish these ends, HIPO utilizes two types of charts: a hierarchy chart and
an input-process-output chart. The hierarchy chart pictorially illustrates how each pro-
gram function is divided into subfunctions or modules, and the input-process-output
chart expresses each module in the hierarchy in terms of its input and output considera-
tions. Examples of these charts are shown in Figures 1-1 and 1-2.

Figure 1-1 deserves a little explanation. What this figure illustrates is how the pro-
gram function ‘‘Calculate Pay’’ is subdivided into subfunctions or modules. Specifically,
this chart shows us that ‘‘Calculate Pay,’’ designated as hierarchy level 1.0, is divided
into subfunctions ‘‘Calculate Gross Pay’’ and ‘‘Calculate Net Pay.’’ Thus, in order to
‘‘Calculate Pay,’” one must first ‘‘Calculate Gross Pay’’ and ‘‘Calculate Net Pay.”’ Since
“‘Calculate Gross Pay’’ is at level 2.0, it must be completed before proceeding to level
3.0. To complete level 2.0 one must complete sublevels 2.1, 2.2, and 2.3. Each of these
is completed as the result of completing its sublevels. For example, to complete level 2.2,
one must complete levels 2.2.1, 2.2.2, 2.2.3, and 2.2.4. Thus, before level 2.0 can be
considered complete, all sublevels beginning with 2. XXX must have been completed.

Calculate
Pay
1.0
Calculate Calculate
Gross Pay Net Pay
2.0 3.0
Accumulate . Multiply .
Hours Determine Hours by Calculate Write Check
Worked Pay Rate Rate Deductions for Net Pay
21 2.2 2.3 3.1 3.2
Verify i Check for
Employee Check Type Find Special
Number of Work Pay Rate Conditions
2.2.1 2.2.2 223 224

FIGURE 1-1 Example of a HIPO hierarchy chart.




Program Design

UNIT 1
BACKGROUND
TO COBOL

6

AUTHOR W. M. Fuori SYSTEM/PROGRAM: Payroll DATE 1/81 PAGE: 1 OF 1

DIAGRAM ID 2.0 NAME DESCRIPTION Calculate Gross Pay
INPUT PROCESS OUTPUT
PA}gSLL 1. Accumulate Hours Worked T:‘X;S)E%
RECORD

:> 2. Determine Correct Rate of :J_‘> GI;??S
Pay for Type of Work Done

FILE
PAYROLL ERROR
MASTER 3. Calculate Gross Pay MESSAGES

FIGURE 1-2 Example of a HIPO input-process-output chart.

Once level 2.0 has been completed, level 3.0 can commence, and so on, until all levels in
the hierarchy have been completed.

HIPO diagrams are constantly being refined as the development of the program con-
tinues. The initial emphasis is on ensuring that program functions are clearly understood
by both the designers and originators so that the resulting program will meet the needs for
which it is being designed. The major functions of the program are listed at the top level
and expanded to lower-level modules as more detail is required.

During the process, certain basic guidelines should be observed:

1. All modules in the hierarchy chart should logically relate to one another, with con-
trol passing from the top module down to the next lower module, and so on.

2. Each module in the hierarchy chart should represent only one program function and
contain a single entry point and a single exit point (only one way into the module
and only one way out of the module).

3. The functions of each module should be specific enough so that it can be imple-
mented with a minimum of one page or approximately 50 lines of coding. This will
greatly enhance the texting and debugging of the module.

Once this phase of the program design has been completed using a formal procedure
such as HIPO, or informally as described earlier, the next can step begin.

Once the hierarchy and input-processing-output charts have been completed, the detailed
program design can commence. This can be accomplished with the aid of a program
flowchart or pseudocode.

The flowchart is a graphic representation of the nature and order of the arithmetic
and logical operations required to solve a problem. Pseudocode, on the other hand, is an
imitation computer code. It is used in place of symbols or a flowchart to describe the logic
of a program. Pseudocode is intended to overcome the two principal disadvantages of the
flowchart: The flowchart is time consuming to create and is difficult to modify without
redrawing it completely.

Pseudocode employs the basic structures employed in structured programming (SE-
QUENCE, IF-THEN-ELSE, DO-WHILE or DO-UNTIL, and the CASE structure).
Figure 1-3 illustrates these structures in both flowchart and pseudocode form. Figure 1-4

illustrates a program segment to determine a salesperson’s pay as it would appear in a
flowchart and in pseudocode.



CHAPTER 1
GENERAL
CONCEPTS

7

Programmers and systems analysts still disagree on whether they prefer the program
flowchart or pseudocode. Both techniques are currently in use. Only the future will tell
which technique, if any, will gain universal acceptance. For our purposes in this text, we
will employ the program flowchart.

As stated above, the flowchart is a graphic representation of the nature and order of
the arithmetic and logical operations required to solve a problem. It illustrates the sequen-
tial order of the steps to be taken to process the input data and provide meaningful results.
The programmer’s flowchart is similar to an architect’s blueprint. The architect draws a
blueprint before starting construction of a building; the programmer constructs a flowchart
before starting the programming of an application. Figure 1-5 illustrates an IBM template
that can be used for the construction of structured program flowcharts. Note that the basic
programming structures are shown on the template for ready reference.

The program flowchart serves the programmer in many ways, some of which are the
following:

SEQUENCE Structure

FLOWCHART PSEUDOCODE

Routine A
Routine B

IF-THEN-ELSE Structure

FLOWCHART PSEUDOCODE

IF Condition
Routine A

ELSE
Routine B

ENDIF

FIGURE 1-3 Basic structures shown in flowchart and pseudocode forms.



