Lecture Notes in Mathematics

955

Marc Bernot
Vicent Caselles
Jean-Michel Morel

Optimal
Transportation
Networks

Models and Theory

@ Springer



Marc Bernot - Vicent Caselles
Jean-Michel Morel

Optimal Transportation
Networks

Models and Theory

@ Springer



Authors

Marc Bernot

Unité de mathématiques pures et appliquées
ENS Lyon

46, allée d’Italie

69363 Lyon Cedex 7, France
mbernot@umpa.ens-lyon.fr

Vicent Caselles

Dept. de Tecnologies de la Informacié
i les Comunicacions

Pompeu Fabra University

Passeig de Circumval.lacié 8

08003 Barcelona, Spain
vicent.caselles @upf.edu

Jean-Michel Morel

CMLA, Ecole Normale Supérieure de
Cachan

61 av. du Président Wilson

94235 Cachan Cedex, France

morel @cmla.ens-cachan.fr

ISBN: 978-3-540-69314-7 e-ISBN: 978-3-540-69315-4

DOI: 10.1007/978-3-540-69315-4

Lecture Notes in Mathematics ISSN print edition: 0075-8434
ISSN electronic edition: 1617-9692

Library of Congress Control Number: 2008931162

Mathematics Subject Classification (2000): 49Q10, 90B10, 90B06, 90B20

(© 2009 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations

are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective

laws and regulations and therefore free for general use.

Cover design: SPi Publishing Services
Printed on acid-free paper
987654321

springer.com



Lecture Notes in Mathematics 1955

Editors:

J.-M. Morel, Cachan
F. Takens, Groningen
B. Teissier, Paris



Preface

The transportation problem can be formalized as the problem of finding
the optimal paths to transport a measure u* onto a measure p~ with the
same mass. In contrast with the Monge-Kantorovich formalization, recent
approaches model the branched structure of such supply networks by an
energy functional whose essential feature is to favor wide roads. Given a flow
@ in a tube or a road or a wire, the transportation cost per unit length
is supposed to be proportional to ¢® with 0 < a < 1. For the Monge-
Kantorovich energy, @ = 1 so that it is equivalent to have two roads with flow
1/2 or a larger one with flow 1. If instead 0 < a < 1, a road with flow ;3 +¢5 is
preferable to two individual roads ¢, and @3 because (1 + p2)* < O + ¢5.
Thus, this very simple model intuitively leads to branched transportation
structures. Such a branched structure is observable in ground transportation
networks, in draining and irrigation systems, in electric power supply systems
and in natural objects like the blood vessels or the trees. When a > 1 — %
such structures can irrigate a whole bounded open set of RV,

The aim of this set of lectures is to give a mathematical proof of sev-
eral existence, structure and regularity properties empirically observed in
transportation networks. This will be done in a simple mathematical frame-
work (measures on the set of paths) unifying several different approaches
and results due to Brancolini, Buttazzo, Devillanova, Maddalena, Pratelli,
Santambrogio, Solimini, Stepanov, Xia and the authors.

The link with anterior discrete physical models of irrigation and erosion
models in hydrography and with discrete telecommunication and transporta-
tion models will be discussed. It will be proved that most of these models fit
in the simple model sketched above. Several mathematical conjectures and
questions on the numerical simulation will be developed.

The authors thank Bernard Sapoval for introducing them to this sub-
ject and for giving them many insights on physical aspects of irrigation
networks. V. Caselles acknowledges partial support by the “Departament
d’Universitats, Recerca i Societat de la Informacié de la Generalitat de
Catalunya” and by PNPGC project, reference BFM2003-02125. J.M.Morel
acknowledges many discussions with and helpful suggestions from Giuseppe
Devillanova, Franco Maddalena, Filippo Santambrogio and Sergio Solimini.
He also thanks UCLA for its hospitality during the revision of the manuscript.
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1 Introduction: The Models

The aim of this book is to give a unified mathematical theory of branched
transportation (or irrigation) networks. The only axiom of the theory is a
[ x s* cost law (0 < a < 1) for transporting a good with size s on a path
with length [. Let us explain first why this assumption is relevant.

Humans have designed many supply-demand distribution networks trans-
porting goods from supply sites to widespread distribution sites. This is
obviously the case with networks for ground transportation, communica-
tion [44], electric power supply, water distribution, drainage [52], or gas
pipelines [16]. These networks show a striking similarity to observable nat-
ural irrigation and draining systems which connect a finite size volume to a
source or to an outlet. Forests, plants, weeds, and trees together with their
root systems, but also the nervous, the bronchial and the cardiovascular sys-
tems have a common morphology which seems to derive from topological
constraints together with energy saving requirements. All of these systems
look like spatial trees and succeed in spreading out a fluid from a volume
or a source onto another volume. The associated morphology is a tree (or a
union of trees) made of bifurcating vessels. Their intuitive explanation is that
transport energy is saved and better protection is obtained by using broad
vessels as long as possible rather than thin spread out vessels.

The above list involves a huge range of natural and artificial phenomena.
So the underlying optimization problems have been treated at several com-
plexity levels, by different communities, and with different goals. Even the
names of the network optimization problems vary. The problem first emerged
in the framework of operational research and graph theory. In that case the
geometry of the network is fixed a priori and the problem is known in graph
theory by the name of Minimum Concave Cost Flows. This model was intro-
duced in Zangwill’s article [100]. It considers graphs endowed with flows and
prescribed sources and demands at certain graph nodes. The transportation
of a mass along an edge has a cost, usually proportional to its length but
concave with respect to the mass. The optimization problem is to find the
minimal cost flow achieving a prescribed transport. The abundant literature
dealing with this problem refers to all classical operational research applica-
tions: transportation, communication, network design and distribution, pro-
duction and inventory planning, facility/plant location, scheduling and air
traffic control.

M. Bernot et al., Optimal Transportation Networks. Lecture Notes 1
in Mathematics 1955.
© Springer-Verlag Berlin Heidelberg 2009
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Fig. 1.1. The structure of the nerves of a leaf (see [97] for a model of leaves based
on optimal irrigation transport).

In all of these cases, the concavity of the transport cost with respect to the
flow along an edge is justified by economical arguments. In Zangwill’s words:
The literature is replete with analyses of minimum cost flows in networks for
which the cost of shipping from node to node is a linear function. However,
the linear cost assumption is often not realistic. Situations in which there is
a set-up with charge, discounting, or efficiencies of scale give rise to concave
functions.

A similar view is developed in the more recent article [99]: Although a
mathematical model with a linear arc cost function is easier to solve, it may
not reflect the actual transportation cost in real operations. In practice, the
unit cost for transporting freight usually decreases as the amount of freight
increases. The cargo transportation cost in particular is mainly influenced by
the cargo type, the loading/unloading activities, the transportation distance,
and the amount. In general, each transportation unit cost decreases as the
amount of cargo increases, due to economy of scale in practice. Hence, in
actual operations the transportation cost function can usually be formulated
as a concave cost function.

Regarding the practical resolution of this optimization problem, the key
source of complexity of the concave cost network flow problem arises from
the minimization of a concave function over a convex feasible region, defined
by the network constraints. As Zangwill points out [100]: although concave
functions can be minimized by an exhaustive search of all the extreme points
of the convex feasible region, such an approach is impractical for all but the
simplest of problems. Indeed, there are potentially an enormous number of
local optima in the search space. For this reason, concave cost network flow
problems are known to be NP-hard [46] and [51]. Yet, many algorithms have
been developed over the years for solving these problems [45], [46], [85], [41],
[99] (this last reference thoroughly discusses the differences between existing
algorithms). As an argument towards a complexity reduction, Zangwill proves
in [100] that optimal flows have a tree structure. Indeed, a local optimum is
necessarily an extremal point so that two flow paths connecting two points
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have to coincide. We shall prove the very same result, under the name of
single path property, in a more general framework (see Chapter 7).

In a similar context many authors have considered the problem of opti-
mizing branched distribution such as rural irrigation, reclaimed water dis-
tribution, and effluent disposal (see [31], [35], [77] among numerous other
references). This literature is more specialized and the model is made more
precise: the layout is prescribed and the decision variables include design
parameters (pipe diameters, pump capacities, and reservoir elevations). The
objective function to be minimized reflects the overall cost construction plus
maintenance costs. The constraints are in the form of demands to be met
and pressures at selected nodes in the network to be within specified limits.

A big limitation of Minimum Concave Cost Flows is that the geometry of
the network is fixed. In practice the network itself has to be designed! This
problem cannot really be addressed within graph theory and leads us to more
geometrical considerations. In a very recent paper [53], Lejano developed a
method for determining an optimal layout for a branched distribution system
given only the spatial distribution of potential customers and their respective
demands. Lejano insists on the novelty of such a problem with respect to
Minimum Concave Cost Flows: Much research has been developed around op-
timizing pipeline design assuming a predetermined geographical layout of the
distribution system. There has been less work done, however, on the problem
of optimizing the configuration of the network itself. Generally, engineers de-
velop the basic layout through experience and sheer intuition.

In this book, we shall retain only the essential aspect of the above prob-
lems, namely the concavity of the transport cost. The optimization problem
we shall consider is the more general one, namely the optimization of the
layout itself. Since the number of sources and wells is finite, most irrigation
or transport practical models look at first discrete. Yet, because of the huge
scale ratios and of invariance requirements, a continuous model is preferable.

In the continuous framework, the transportation or irrigation problem
can be formalized as the problem of finding the optimal paths to transport
any positive measure (not necessarily atomic or finite) u* onto another pos-
itive measure p~ with the same mass. The first and classical statement of
this transportation problem is due to Monge [62] and its formalization to
Kantorovich [50]. In this original model, masses are transported on infinitely
many straight routes by infinitesimal amounts. Probably the best natural
phenomenon akin to this mathematical solution is the nectar gathering by
bees from the fields to the hive. In the Monge-Kantorovich model the straight-
ness of trajectories makes the transportation cost ¢ x [ strictly proportional
to the amounts of transported goods ¢ and to the distance [. As we already
pointed out, transportation on straight lines is neither economically nor en-
ergetically sound in most situations and does not correspond to the observed
morphology of transportation networks.
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Fig. 1.2. A cast of a dog set of lungs. They solve the problem of bringing the
air entering the trachea onto a surface with very large area (about 500 m? for
the human lungs). A mathematical and physical study of the lungs efficiency is
developed in [61].

The simplest mathematical model compatible with the above considera-
tions on supply networks uses a cost function whose essential feature is to
favor wide routes rather than thin ones. Given a flow ¢ in a road or a tube
or a wire, the transportation cost per unit length is taken proportional to
p®* with 0 < a < 1. For the Monge-Kantorovich energy a = 1 so that it is
equivalent to have two roads with flow 1/2 or a larger one with flow 1. If
instead 0 < a < 1, a road with flow ¢; + ¢ is preferable to two individual
roads with flows ¢; and @y because (¢1 + ¢2)* < ¢f + ¢%. In the terms
of Xia [94], the interpretation reads as follows: In shipping two items from
nearby cities to the same far away city, it may be less expensive to first bring
them into a common location and put them on a single truck for most of the
transport. In this case, a “Y shaped” path is preferable to “V shaped” path.
So the only axiom in this theory will be the s* cost law with 0 < a < 1.

To the best of our knowledge the concave power law was first proposed
in 1967 by Gilbert [44] to optimize communication networks. But the very
same model has recurred in the past twenty years for the physical analysis
of scaling laws in animal metabolism [88], [89], [8]. The models in the men-
tioned authors and in the river basins literature described extensively in the
book (73] consider finite graphs G' made of tubes satisfying the Kirchhoff
conservation law. The source and wells are modeled by finite sums of Dirac
masses. The energy of the network, interpretable as a power dissipation, is

W(G) =) ls;2¢f,
keG
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Fig. 1.3. A very old tree (1200 years) spans his branches towards the light. Trees
and plants solve the problem of spanning their branches as much as possible in
order to maximize the amount of light their leaves receive for photosynthesis. The
surface of the branches is minimized for a better resistance to parasites, temperature
changes, etc.

where G is the set of tubes, k the tube index, s, the tube section, ;. the tube
length, and ¢y, the flow in the tube. Thus the model is a priori more complex
than the Gilbert model, which only considers a flow depending cost

W(G) =Y lkep (1.1)

A.
However, it will be proven in Chapter 14 that the energy W reduces to a
Gilbert energy W with a = % under the mild and natural assumption that

the network volume is fixed.

Let us give some examples. A tree (see Figure1.3), a plant or a forest
can be viewed as transportation networks from the ground (a 3-D volume)
onto a 2D surface, typically a sphere in the case of an isolated tree or, at
a different scale, a plane in the case of a forest. Indeed, the roots spread
in the ground to attain every part of the underneath volume in search of
water and nutriments. In the air, branches tend to spread out to intercept as
much sunlight as possible. Thus we can roughly view the branches as means
to reach by subdivision a sphere approximating the tree’s foliage. The tree
branches are barked bundles of fibers going from the ground to the leaves (see
Figure 1.1) and transporting the sap at constant speed. Up to a multiplicative
constant, the flux in a branch is equal to its section: ¢, = sp where s is the
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section. The obvious protection requirement of the branches from external
aggressions such as parasites or temperature changes leads to minimize their
area, which is barked for the same reason. Thus we are led to a minimal
surface problem,

min(W(G) = > lupf) (1.2)
k

with the constraints that the graph G satisfies the Kirchhoff law and irrigates
a stipulated volume and a stipulated surface. The cost given in (1.2) is similar
to the one for pipe-lines [16]. In that case the construction cost is W(G) =

Yok lkcp,% because it is proportional to the length and to the diameter of the
tubes while the flow is itself roughly proportional to the size of the tubes.
The discrete model is well justified in that latter case since wells and plants
are indeed finite atomic masses. In the case of O.C.N. (Optimal Channel
Networks, [73]) modeling river networks, the power is again a =~ % and the
irrigation constraints have to model the drainage of a whole region to a few
river mouths. Last but not least, the human body contains irrigation networks
irrigating a whole volume from the heart in the case of arteries (see Figure 1.4)
and a very large surface from the throat in the case of lungs (see Figure 1.2).
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Fig. 1.4. Arteries of the human body. They solve the problem of transporting
the blood from the heart to the whole body with very low basal metabolic rate.
Attempts to demonstrate scaling laws in Nature have focused on the basal metabolic
rate [89,90]. This rate has been linked to the total blood flow.
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All of these networks have a striking similarity structure. In particular, they
are trees.

The Gilbert energy is simple but the devil is in the irrigation constraints
which we just mentioned. In the discrete model these are just a finite set. Of
course all irrigated Lebesgue measures can be approximated by finite atomic
measures. Yet in the continuous setting, the feasibility of irrigation networks
is no more granted. Not that there would be a geometric obstruction to the
existence of infinite trees irrigating a positive volume K in a strong sense,
namely with a branch of the tree (a sequence of tubes) arriving at every
point of K. Such tube trees can be constructed by rather explicit rules; they
can satisfy the Kirchhoff law and can even have the fluid speed decrease
and be null at the tips of capillaries. Such constructions can be found (e.g.)
in [8], [67] and [27]. Figure 1.5 gives an intuitive recursive construction of a
tree irrigating a cube. One of the first examples described in the literature is
due to Besicovitch [15] and is precisely the construction in Figure 1.5.

Optimal irrigation networks are complex objects and some generic
descriptors are needed to describe them. Among the candidates, fractal
dimensions have had the preference of most authors. In geomorphology,
an early study of the fractal-like behavior of natural drainage networks
was started as early as 1945 by R.E. Horton [47], A.N. Strahler [82], and
generalized by E. Tokunaga [84].

Fig. 1.5. An irrigating tree.
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To be able to derive fractal dimensions from the variational model, a basic
assumption is usually made, namely that the network has a branched tree
structure made at each scale of tubes of a certain uniform length, radius and
with a given branching number. In other terms, the irrigation system is a
fully homogeneous tree in scales, sizes and shapes like the tree of Figure 1.5.
Then, under these ad hoc assumptions, the authors of [88], [89], [20] prove
that the network has a fractal structure with self-similar properties. The
irrigation network is then characterized by the branching ratios and the ratios
of radii and lengths of the tubes. Calling n the branching ratio, the above
assumptions permit to conclude the radii and length ratios scale as powers
of n. This heuristic reasoning ends up with a structure described as a self-
similar fractal.

The weak point of the above treatment is the very strong homogeneity
assumption involved in the heuristic calculations. The self-similarity proper-
ties, if they are really true, should be deduced from first principles. The basic
variational principle related to the cost of irrigation and the irrigation con-
straints should be the only basis for structural statements as was requested
n [88]. Authors in [89] acknowledge that In spite of the very large number
of numerical and empirical studies, no general theory based on fundamental
laws has yet been developed for (...) fractal behavior (...).

Thus, the aim of these lecture notes is to go back on the foundations of
optimal channel networks. We shall define a common mathematical structure
to all of them and give a proof of several structure and regularity properties
empirically observed in transportation networks. These results hopefully pave
the way to the study of fractal properties. They already confirm that fully
self-similar models are too simplistic. Actually many of the questions raised
by specialists such as the regularity issues, the existence and shape of river
basins, the dimensionality of the irrigated volumes, surfaces and of the irriga-
tion network itself can only be rigorously treated once a continuous invariant
model has been stated and existence and regularity proven in the general
setting adopted here. For example the formation of “tubes”, which is one of
the assumptions of the empirical models must (and will) be demonstrated,
and their regularity and_branching number estimated.

The first job is to fix an adequate mathematical object for irrigation net-
works, simple enough to cope with the mathematical challenges but general
enough to cover the variety of cases. At least three mathematical models
have been proposed so far. Xia [94] modeled the networks as currents which
can be approximated in the sense of currents by finite irrigation networks.
This definition based on a relaxation yields easy weak existence results for
minimizers but does not seem well adapted to a thorough description of the
network structure.

Maddalena and Solimini [59] gave a much more explicit definition in the
case of networks which start from a single source. Their definition is directly
derived from the tree model as a union of fibers. The fibers are Lipschitz



