ocal Newforms
=
l\
=
T\
/
prlnger

95
=
et
.wm
~ B
=

Q
=4 U
O
o=
a 'l

BA
NS

SJ1JRWAYIRN Ul SRJON 34N}

1918



Brooks Roberts Ralf Schmidt

Local Newforms for GSp(4)

@ Springer



Authors

Brooks Roberts Ralf Schmidt

Department of Mathematics Department of Mathematics
University of Idaho University of Oklahoma
Moscow ID 83844-1103 Norman OK 73019-0315

USA USA

e-mail: brooksr@uidaho.edu e-mail: rschmidt@math.ou.edu

About the diagram. The diagram illustrates natural bases for the new- and oldforms in a generic
representation © of GSp(4,F) with trivial central character. The solid dot in the first row is the
newform at level Nz. The solid dots and circles of the k-th row represent vectors in a natural basis
for the oldforms at level Ny + k. Thus, the dimension of the paramodular vectors at level Ny is 1, the
dimension at level N + 1 is 2, the dimension at level Ny + 2 is 4, and so on. The basis at a particular
level is obtained from the newform by application of the commuting level raising operators 6.
0'. and the self-dual operator 1. The arrows pointing down and to the left correspond to 6, the
arrows pointing down and to the right correspond to 6', and the vertical arrows correspond to 1.
The black dots represent oldforms obtained solely by application of 8°s and 6”’s. The inner-most
circles represent oldforms obtained by a single application of 17, the circles immediately around the
inner-most circles represent oldforms obtained by two applications of 1, etc.

Library of Congress Control Number: 2007929853

Mathematics Subject Classification (2000): 11F46, 11F70,22E50

ISSN print edition: 0075-8434

ISSN electronic edition: 1617-9692

ISBN 978-3-540-73323-2 Springer Berlin Heidelberg New York
DOI 10.1007/978-3-540-73324-9

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations are
liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

(©) Springer-Verlag Berlin Heidelberg 2007

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting by the authors and SPi using a Springer IXTEX macro package

Cover design: design & production GmbH, Heidelberg

Printed on acid-free paper SPIN: 12083152 41/SPi 543210



Acknowledgments

This work was funded through NSF grants #0454809 and #0400837, com-
monly titled “Collaborative Research: Local Newforms for GSp(4)”. Further
funding was provided by the RiP program of Mathematisches Forschungs-
institut Oberwolfach in 2005. We thank Siegfried Bécherer, Masaaki Furusawa,
Paul Garrett, Tomoyoshi Ibukiyama, Dihua Jiang, Winfried Kohnen, Rainer
Schulze-Pillot, and the automorphic forms group at the University of
Minnesota for support and interest, and Jana Joyce of the University of Idaho
for technical assistance. Finally, we thank our families for their patience and
support during our frequent meetings.



Contents

1 A Summary . ... 1
2 Representation Theory .................................... 27
2.1 Definltions. .. ...ooouii 27
2.2 Parabolically Induced Representations ..................... 34
2.3 Dual Groups . .. .ovii i 40
2.4 The Local Langlands Correspondence ...................... 46
2.5 P3-Theory . ..o 62
2/0 Zeta InteEralS o ou vosus swee s srims sOams 155 Es 10545 $65 253 74
3 Paramodular Vectors ............. ... ... .. ... .. .. ... ..... 85
3.1 Linear Independence ............ ... ... ... .. ... ... . ..... 85
3.2 The Level Raising Operators 6, ¢’ and n.................... 90
3.3 Level Lowering Operators .....................oouiin.... 107
3.4 Paramodular Vectors and Ps-Theory ....................... 117
4 ZetalIntegrals ....... ... ... . .. ... 123
4.1 Paramodular Vectors and Zeta Integrals . ................... 123
4.2 Poles and P3-Theory ......... ... .. . ... 128
4.3 ThenPrinciple .......coniiniiiniiiii it 135
4.4 The Existence Theorem for Generic Representations ......... 148
5 Non-supercuspidal Representations ........................ 151
5.1 Double Coset Decompositions . ............................ 151
5.2 Induction from the Siegel Parabolic Subgroup ............... 156
5.3 Representations of Type lIllband IVe ...................... 161
5.4 Induction from the Klingen Parabolic Subgroup ............. 165
5.5 Saito-Kurokawa Representations .......................... 168
Bl UL 5 wpos s smsms smems emsms sms 50 8Rs cHims £5 265 555 me ne 182

5.7 Atkin-Lehner Eigenvalues ................................ 183



VIII Contents

6 Hecke Operators. ........ ... ... 187
6.1 Two Hecke Operators ............ ... 188
6.2 The Commutation Relation............ ... ... ... ........ 195
6.3 Hecke Operators and Level Raising .. ...................... 205
6.4 Computation of Hecke Eigenvalues............... ... ... ... 213
6.5 Some Consequences of Unitarity ............ SraE BEoHE SR RE 236
7 Proofs of the Main Theorems . ............................. 239
7.1 Zeta Integrals: The Unramified Case ....................... 239
7.2 Zeta Integrals: The Level p Case .......................... 243
T3 ThelOperator B : .usws soswe copmnsme moms shsms ousmeems £55 0 248
7.4 Zeta Integrals: The Higher Level Case...................... 252
7.5 Main Results ........ .. . . 262
A Tables for Representations of GSp(4) ...................... 269
A.1 Non-supercuspidal Representations ........................ 269
A.2 Unitary Representations. .................. oo, 271
A.3 Jacquet Modules ...... ... ... . . ... 273
A4 The Ps-Filtration........... .. ... .. . . .. 277
A5 L-Parameters ................ i, 280
A.6 L- and e-factors (degree 4)........ ... ... .. ... 282
A.7T L- and e-factors (degree 5)...... ... ... i 286
A.8 Paramodular Dimensions and Atkin-Lehner Eigenvalues. . .. .. 290
A.9 Hecke Eigenvalues ........ .. ... ... .. .. i 294
A.10 Parahori-invariant Vectors . ...... .. ... ... ... .. .. .. ... 297
References . .......... .. .. 300



1

A Summary

The local theory of new- and oldforms for representations of GL(2) is a tool
for studying automorphic forms on GL(2) and their applications. This the-
ory singles out, in infinite-dimensional representations, certain vectors which
encode information. Thus, this theory lies at the intersection of representa-
tion theory, modular forms theory, and applications to number theory. See
the work of Casselman [Ca2]; for more information and references, see [Schl].
The paper [JPSS] generalized some aspects of the theory for GL(2) to GL(n)
for generic representations.

This work presents a local theory of new- and oldforms for representations
of GSp(4) with trivial central character. This theory resembles the GL(2) the-
ory, but also has some new features. Our theory considers vectors fixed by the
paramodular subgroups K(p™) as defined below. Paramodular groups, their
modular forms, and their application to abelian surfaces with polarizations of
type (1, V) have been considered for about fifty years. At the same time, the
literature perhaps shows a greater emphasis on Siegel modular forms defined
with respect to the Siegel congruence subgroup I'y(NV). Nevertheless, in hind-
sight, it seems clear that the paramodular subgroups are good analogues of
the congruence subgroups underlying the new- and oldforms theory for GL(2)
and GL(n). In combination with the structure of the discrete spectrum of
GSp(4, Ag), the results of this work lead to a satisfactory theory of new- and
oldforms for paramodular Siegel modular forms of genus 2. This is discussed
in our paper [RS]. We intend to consider this topic again in a later work.
This introduction is divided into three parts. The first part briefly reviews
the GL(2) theory, the second part summarizes our main results, and the final
part delineates the three methods used to prove the main theorems.

Before beginning, we mention some comments that apply to the entire
body of this work. First, as far as we know, our theory of new- and oldforms
is novel and is unanticipated by the existing framework of general conjectures.
Second, as concerns methods and assumptions, this work contains complete
proofs of all results, does not depend on any conjectures, and does not use
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global methods. And finally, this work makes no assumptions about the resid-
ual characteristic of the underlying non-archimedean local field.

The GL(2) Theory

The purpose of this work is to demonstrate the existence of a new- and old-
forms theory for GSp(4). We begin by recalling the relevant new- and oldforms
theory for GL(2), since this is the archetype for our collection of theorems.
First we require some definitions. Let F' be a nonarchimedean local field
of characteristic zero with ring of integers o, let p be the maximal ideal of o,
and let ¢ be the number of elements of o/p. Fix a generator w for p. Let ) be
a non-trivial character of F with conductor o. For each non-negative integer
n let I'h(p™) be the subgroup of k in GL(2, F') such that det(k) is in 0™ and

ke["”"].
p- o

The group Iy(p™) is normalized by the Atkin-Lehner element of level p™

Uy = n |-
—w

Note that u? lies in the center of GL(2, F).

Next, we consider representations. Recall that an irreducible, admissible
representation of GL(2, F') with trivial central character is either generic, in
which case it is infinite-dimensional, or non-generic, in which case it is one-
dimensional. The theory of new- and oldforms is mainly about generic repre-
sentations, and we consider them first. However, since our goal is to provide
motivation for the case of GSp(4), and since non-generic representations play
a much larger role in the local and global representation theory of GSp(4), we
will also treat the case of non-generic, i.e., one-dimensional, representations
at the end of this section.

Let 7 be a generic, irreducible, admissible representation of GL(2, F') with
trivial central character. Let W(m, ) be the Whittaker model of 7 with re-
spect to v, and let

Z(s,W) = /W([" 1})|a|~*’/2 d*a

FX

be the zeta integral of W € W(m, ¢). Zeta integrals satisfy a functional equa-
tion involving the element wug, and the theory of zeta integrals assigns to m
an L-factor L(s,w) and an e-factor (s, ); see Chapter 6 of [G] for a sum-
mary. Let W} be the Weil Deligne group of F. If ¢ : Wi — GL(2,C) is
the L-parameter of 7, then L(s,7) = L(s,¢) and e(s,m) = &(s, ). For the
definitions of L(s, ¢) and £(s, ¢) see the end of Sect. 2.4. The following is the
main theorem about newforms for GL(2) that is relevant for our purposes.
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Theorem (GL(2) Generic Newforms Theorem). Let (w, V) be a generic.
wrreducible, admissible representation of GL(2, F') with trivial central charac-
ter. For each non-negative integer n, let V(n) be the subspace of V' of vectors
W such that m(k)W =W for all k in I'y(p™). Then the following statements
hold:

i) For some n the space V(n) is non-zero.
it) If Nn is the minimal n such that V(n) is non-zero, then dimV (N, ) = 1.
iii) Assume V.= W(m, ). There exists Wy in V(N,) such that

Z(s,Wy) = L(s. 7).

If (w,V) is a generic, irreducible, admissible representation of GL(2, F)
with trivial central character, then we call N, the level of ; in some references.
N is called the conductor of 7. Any non-zero element of the one-dimensional
space V(Ny) is called a newform, and the elements of the spaces V(n) for
n > N, are called oldforms.

A corollary of the GL(2) Generic Newforms Theorem is the computation
of the e-factor of a generic representation. Let 7 be a generic, irreducible,
admissible representation of GL(2, F') with trivial central character. Since ’U,?VK
lies in the center of F'*, and since the space V(N,) is one-dimensional, any
non-zero element of V(N;) is an eigenvector of m(uy,_) with eigenvalue e, =
+1. As a consequence of the functional equation for zeta integrals and the
GL(2) Newforms Theorem we obtain the following corollary.

Corollary (e-factors of Generic GL(2) Representations). Let (w,V) be
a generic, irreducible, admissible representation of GL(2, F') with trivial cen-
tral character. Then e(s,m) = e q~ N=(s=1/2),

This result computes the e-factor of a generic representation in terms of
invariants of a newform that make no reference to a specific kind of model: can
L(s, ) also be computed in this way? This is possible using a Hecke operator.
Let n be a non-negative integer, and let H(I((p™)) be the Hecke algebra of
IH(p™), i.e., the vector space of left and right Iy(p™)-invariant, compactly sup-
ported functions on GL(2, F') with product given by convolution. Let (7, V)
be a smooth representation of GL(2, F') with trivial central character; we do
not assume V is the Whittaker model of 7. Then H(IH(p™)) acts on V(n) by

(= / fl@)n (oY dg,

GL(2.,F)

where the Haar measure on GL(2, F') assigns [(p™) volume 1. We will use
the operator 7(f) on V(n) corresponding to the characteristic function f of

re) [ | 1oten)

We will write 77 = m(f).
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Theorem (GL(2) Hecke Eigenvalues and L-functions). Let (7,V) be a
generic, irreducible, admissible representation of GL(2, F) with trivial central
character, and let W € V(N ) be a newform, i.e., a non-zero element of the
one-dimensional space V(N). Then W is an eigenform for Ty; let

W = A\ W.
1) Assume N, =0, so that 7 is unramified. Then

1

L(s,m) = - .
(S 7T) i <= )\n_(]—l/zqfs e (1——23

it) Assume Np = 1. Then

1

L(S. 7T) = W/—ZF s

i1) Assume Ny > 2. Then \r =0, and L(s,7) = 1.

The last result of the theory for generic representations asserts that vectors
in the spaces V(n) for n > N, are obtained by repeatedly applying two level
raising operators to a newform and taking linear combinations. For n a non-
negative integer, define 5’ : V(n) — V(n + 1) by #'(v) = v. Also, define
3 :V(n) — V(n+1) to be the Atkin Lehner conjugate of 3, i.e., define
3 =m(upy1) o B om(uy,), so that

Theorem (GL(2) Oldforms Theorem). Let (m.V) be a generic, irre-
ducible, admissible representation of GL(2, F) with trivial central character.
Then, for any integer n > Np.

dimV(n) =n— N, + 1.

If W € V(N;) is non-zero, then the space V(n) for n > Ny is spanned by the
linearly independent vectors

BUFW, i,j>0,i+j=n— Ng.

In particular, all oldforms can be obtained by applying level raising operators
to the newform and taking linear combinations.

Finally, similar results hold for non-generic representations which admit
non-zero vectors fixed by some I'y(p™). Again, any non-generic, irreducible.
admissible representations of GL(2, F') with trivial central character is one-
dimensional, and is thus of the form a o det for some character a of F*. Let
7 = a o det, where a is a character of F*. Then m admits a non-zero vector
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fixed by I'h(p™) for some non-negative integer n if and only if « is unramified.
Assume « is unramified. Obviously, V(n) is non-zero and one-dimensional for
all non-negative integers n. The quantities N, e, and A; from above are all
defined since they are model-independent. We have

N.=0. e.=1, Ar=(qg+1a(=).

Though the theory of zeta integrals for generic representations does not ap-
ply, the Langlands correspondence assigns e-factors and L-factors to all irre-
ducible, admissible representations of GL(2, F'). These assignments coincide
with the assignments made by the theory of zeta integrals for generic repre-
sentations. If ¢ : Wi — GL(2,C) is the L-parameter assigned to =, then
a computation shows that (s, p,) and L(s,¢,) can be expressed by exactly
the same formulas as in the generic setting:

; 1
e — —Nz(s—1/2) . _
ELs, =& 5 L S, = =,
(8,r) =€nq (s, ¢r) T WY p—rp—

It is trivial that the elements of V(n) for n > N, = 0 are obtained from a
newform by applying the level raising operator (3'. Though it is obvious, we
note also that, in contrast to the case of generic representations, 5 and 3 do
not produce linearly independent vectors.

Main Results

In analogy to the GL(2) theory, this work considers vectors in irreducible,
admissible representations of GSp(4, F') with trivial central character that are
fixed by the paramodular groups K(p"), as defined below. Such vectors are
called paramodular, as are representations which admit non-zero paramod-
ular vectors. Briefly summarized, our work has three main results. First, a
theory of new- and oldforms exists for generic representations of GSp(4) with
trivial central character, and this theory strongly resembles the GL(2) theory
described above. In particular, all generic representations with trivial central
character are paramodular. Second, the two essential aspects of the generic
theory also hold for arbitrary paramodular representations 7 of GSp(4): there
is uniqueness at the minimal paramodular level, and all oldforms are obtained
from a newform by applying certain level raising operators and taking linear
combinations. Third, newforms in paramodular representations encode im-
portant canonical information. If the language of the conjectural Langlands
correspondence is used, then our results, which do not depend on or use any
conjectures, indicate that a newform in a paramodular representation 7w deter-
mines the e,-factor £(s, ) and the L-factor L(s, p,) of the L-parameter o,
of 7. In this section we will discuss the main results in the order mentioned,
beginning with the theorems about generic representations. Readers desiring
to see additional data should consult the tables in the appendix. These tables
explicitly describe important objects and quantities for each irreducible, ad-
missible representation of GSp(4, F') with trivial central character. The basis
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for these tables is the Sally-Tadi¢ classification [ST] of non-supercuspidal, ir-
reducible, admissible representations of GSp(4, F') in the form of Table A.1.
Methods and proofs will be discussed in the next section.

First we need some general definitions. Throughout this work, GSp(4, F)
is the group of ¢ in GL(4, F) such that ‘gJg = AJ for some X in F*, where

The element A is unique, and will be denoted by A(g). If n > 0 is a non-
negative integer, then the paramodular group K(p™) of level p” is the subgroup

of k € GSp(4, F) such that A(k) is in 0* and

0
n

ke

0
p" o
p" o
p’l p” p"
The first paramodular group K(p®) is just GSp(4,0), a maximal compact,
open subgroup of GSp(4, F). The second paramodular group K(p') is the
other maximal compact, open subgroup of GSp(4, F'), up to conjugacy. Note
that, in contrast to the case of the Hecke subgroups in GL(2, F'), K(p") is not
contained in K(p™) for any pair of distinct non-negative integers n and m.

The paramodular group K(p™) is normalized by the Atkin-Lehner element
Uy, =

Suppose that (7, V) is an irreducible, admissible representation of GSp(4, F)
with trivial central character. If n is a non-negative integer, then we define
V(n) to be the subspace of vectors v in V such that n(k)v = v for k €
K(p™). The elements of V(n) are called paramodular vectors. We say that = is
paramodular if V(n) # 0 for some n. If 7 is paramodular, then we define N, to
be the minimal n such that V(n) is non-zero, and we call N, the paramodular
level of .

Generic Representations. Now we will discuss our results for generic repre-
sentations. Let (w, V) be a generic, irreducible, admissible representation of
GSp(4, F) with trivial central character. Again, let ¢¥» be a non-trivial char-
acter of F' with conductor o, fix ¢1,c € 0, and define the Whittaker model
W(m, ¢, .,) of m with respect to a certain character v, ., of the upper-
triangular subgroup of GSp(4, F) as in Section 2.1. A theory of zeta inte-
grals, introduced by Novodvorsky [N], exists for generic representations of
GSp(4, F). f W € W(m,¢¢, ¢, ), then the zeta integral of W is
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a
Z(s,W)://W( ;1 )al* 3% dx d*a.

Fx F 1

See Section 2.6 for more theory and references. As regards basic facts, this
theory of zeta integrals is similar to the theory of zeta integrals for generic
representations of GL(2, F). In particular, zeta integrals satisfy a functional
equation involving ug, and the theory associates to m an L-factor L(s, ) and
an e-factor (s, 7). The work [Tak] computed the factors L(s, ) for all generic,
irreducible, admissible representations m of GSp(4, F'). The factor L(s, ) is
sometimes called the spin L-function of 7, and is of the form 1/Q(q™*), where
Q(X) € C[X] is a polynomial of at most degree four such that Q(0) = 1. If the
conjectural Langlands correspondence for GSp(4, F) exists, and if ¢ : W}, —
GSp(4,C) is the L-parameter of 7 according to this correspondence, then it
is conjectured that L(s,7m) = L(s,¢r) and e(s,m) = &(s,px). Here, o, is
regarded as a four-dimensional representation of the Weil-Deligne group Wp.;
we have £(s, pr) = £, ¢~ =12 where e, = +1, and a(p,) is a non-
negative integer. We call a(p,) the conductor of v,. The following theorem
is an analogue of the corresponding GL(2) result described above.

Theorem 7.5.4 (Generic Main Theorem). Let (m, V) be a generic, irre-
ducible, admissible representation of GSp(4, F') with trivial central character.
Then the following statements hold:

1) There exists an n such that V(n) # 0, i.e., © is paramodular.
i) If Ny is the minimal n such that V(n) # 0, then dim V (N, ) = 1.
1i) Assume V = W(m, ¢, ,). There exists Wy € V(N ) such that

Z(s,Wy) = L(s,7).

One immediate consequence of this theorem is that paramodular represen-
tations exist and include generic representations. If 7 is a generic, irreducible,
admissible representation of GSp(4, F') with trivial central character, then we
call the non-zero elements of V(N ) newforms; the above theorem asserts that
a newform for 7 is essentially unique. The elements of V(n) for n > N, are
called oldforms.

Just as for GL(2), if 7 is a generic, irreducible, admissible representation
of GSp(4, F') with trivial central character, then the e-factor and L-factor of =
can be computed in terms of universal invariants of a newform, i.e., invariants
of a newform that do not depend on a specific model for 7. These formulas
for e(s,m) and L(s,n) involve the level N, the Atkin Lehner eigenvalue of
a newform, and the Hecke eigenvalues of a newform. The formula for (s, 7),
and its derivation from Theorem 7.5.4, are identical to those of the GL(2)
theory.



8 1 A Summary

Corollary 7.5.5 (c-factors of Generic Representations). Let (7, V') be a
generic, irreducible, admissible representation of GSp(4, F') with trivial central
character. Let N, be the paramodular level of m as in Theorem 7.5.4, and
let e, be the eigenvalue of the Atkin-Lehner involution m(un_) on the one-
dimensional space V(N,). Then

(s, 7) = epq Ve~

The formula for L(s,n) in terms of model-independent invariants of a
newform requires two Hecke operators. Let n be a non-negative integer, and
let H(K(p™)) be the Hecke algebra of K(p™), i.e., the vector space of left
and right K(p™)-invariant, compactly supported functions on GSp(4, F') with
product given by convolution. Suppose that (7, V') is a smooth representation
of GSp(4, F') with trivial central character; no assumption is made about V.
Then H(K(p™)) acts on V(n) via the formula

o= / f(g)m(g)v da.

GSp(4,F)

Here the Haar measure on GSp(4, F') gives K(p™) volume 1. We will use the
operators on V(n) induced by the characteristic functions of

)
w w

K(p™) 1 K(p") and K(p") =
1 1

w

K(p").

These operators will be called Ty ; and T o, respectively. Motivation for the
consideration of these Hecke operators is provided below in the section on
methods and proofs.

Theorem 7.5.3 (Hecke Eigenvalues and L-functions). Let (7, V) be a
generic, irreducible, admissible representation of GSp(4, F') with trivial central
character. Let W be a newform of m, i.e., a non-zero element of the one-
dimensional space V(Ny). Let

T()\]”" = )\,rVV, T]_(JVV = /LWW’.
where A, and p, are complex numbers.

i) Assume N, =0, so that w is unramified. Then

1
L(s,m)= ¥ . - =7 .
( ) 1— {1~3/Z/\ﬂ_qfs + (q42ﬂ7|- +1+ q—Z)q—Zs _ q—J/Z/\"q—Ss + {1—4.5

1) Assume Np = 1, and let m(u)W = e, W, where e, = %1 is the Atkin
Lehner eigenvalue of W. Then

1
1= g2 (An +x)g " + (¢ 2 e + 1) +enq™1/2g73

L(s,m) =
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111) Assume Np > 2. Then

1

L(s,m) = .
(s,) 1—q320q° + (q2pr + 1)g— 2

This theorem exhibits two new phenomena not present in the GL(2) the-
ory. First, when N, = 1, the formula for L(s, ) involves not just a Hecke
eigenvalue, but also the Atkin-Lehner eigenvalue €,. Second, in contrast to
the GL(2) theory, it is not true that L(s,7) = 1 if N, is sufficiently large.
There are examples of 7 such that N, is arbitrarily large and p, = 0; for such
7w we have L(s,m) # 1 by iii) of Theorem 7.5.3.

Oldforms in generic representations of GSp(4, F') also exhibit a new phe-
nomenon. Just as in the GL(2) case, oldforms for GSp(4) are obtained from
a newform via level raising operators; however, the GSp(4) case requires an
extra operator, and the spaces of oldforms have an additional summand. Let
(7, V) be a smooth representation of GSp(4, F') with trivial central character.
The first two level raising operators, called #’ and 6, are analogues of the
GL(2) operators 3’ and (. The operator §' : V(n) — V(n + 1) is the natural
trace operator, and is the analogue of the GL(2) level raising operator . The
operator 6 : V(n) — V(n + 1) is the Atkin-Lehner conjugate of #', and is
thus defined by 6 = m(u, 1) 06’ o w(uy,). This operator is the analogue of 3.
The third operator, n : V(n) — V(n+ 2), skips one level and does not have a
GL(2) analogue. It is defined by

Theorem 7.5.6 (Generic Oldforms Theorem). Let (m, V) be a generic,
irreducible, admissible representation of GSp(4, F) with trivial central char-
acter. Let N be the paramodular level of m and let W, be the newform as in
Theorem 7.5.4. Then, for any integer n > Ny,

(n — Na +2)2] ‘

dimV(n) = [ 1

For n > Ny, the space V(n) is spanned by the linearly independent vectors
00 W, i,5,k>0,i+j+2k=mn— Ny.

In particular, all oldforms are obtained by applying level raising operators to
the newform and taking linear combinations.

An alternative formulation of this theorem exposes the similarities and
differences between oldforms for GL(2) and oldforms in generic representations
of GSp(4, F'). Theorem 7.5.6 is equivalent to the statement that for n > N,
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the space V(n) is the direct sum of the subspace spanned by the linearly
independent vectors

0" 0'W,, i,57>0,i4+j=Ny—n,
and the subspace nV (n — 2), so that
dimV(n) =n— Ny +1+dimV(n—2).

Stated this way, we see that oldforms in generic representations of GSp(4, F')
have a structure similar to the structure of oldforms in generic representations
of GL(2), with one difference: in the case of GSp(4), the space V(n — 2) also
contributes to V(n) via 7. The subspace nV (n—2) can be characterized as the
subspace of W in V(n) such that Z(s, W) = 0. We call this characterization
the  Principle, and discuss it in the next section. Vectors W in V(n) such
that Z(s, W) = 0 are degenerate. Degenerate vectors do not exist in the GL(2)
theory, and are a new phenomenon for GSp(4).

Arbitrary Representations. This work also treats arbitrary paramodular, irre-
ducible, admissible representations of GSp(4, F') with trivial central character.
We prove that the two basic principles of the generic theory hold for arbitrary
paramodular representations. These principles are essential for global appli-
cations. First of all, there is uniqueness at the minimal paramodular level:

Theorem 7.5.1 (Uniqueness at Minimal Level). Let (7, V) be an irre-
ducible, admissible representation of GSp(4, F') with trivial central character.
Assume that 7 is paramodular, and let N, be the minimal paramodular level.
Then dimV(N,) = 1.

If 7 is a paramodular, irreducible, admissible representation of GSp(4, F')
with trivial central character, then we call the non-zero elements of V(N,)
newforms; the theorem asserts that newforms in paramodular representations
are essentially unique. The elements of V(n) for n > N are called oldforms.
Global applications will require the following theorem. This second basic prin-
ciple asserts that oldforms are obtained from a newform by applying level
raising operators:

Theorem 7.5.7 (Oldforms Principle). Let (m, V') be an irreducible, admis-
sible representation of GSp(4, F) with trivial central character. Assume that
7w is paramodular. If v is a non-zero element of the one-dimensional space
V(Ny) and n > Ny, then the space V(n) is spanned by the (not necessarily
linearly independent) vectors

0" 6"n*v, i,5,k>0, i+ j+2k=n— N.

In other words, all oldforms can be obtained from the newform v by applying
level raising operators and taking linear combinations.
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In fact, we have determined a basis for V(n) among the spanning set of

vectors §'07n*W for all paramodular representations and all n. By Theorem
7.5.6, if 7 is generic, then the spanning vectors 8’*67n* W, where i, j, k > 0 and
i+j+2k = n—N,, form a basis, and the dimension of V(n) is [(n— N, +2)?/4].
This characterizes generic representations: a representation is generic if and
only if the representation is paramodular and dim V' (n) = [(n— N, +2)?/4] for
n > Ny. The bases for V(n) for non-generic, paramodular representations also
follow general schemes. There are four patterns for non-generic, paramodular
representations. First, it can happen that the vectors 8'n*W where i,k > 0
and i+2k = n— N, form a basis for V(n), so that dim V' (n) = [(n— N, +2)/2]
for n > N,. This occurs if and only if 7 is paramodular and of type IIb, IVb,
Vb, Ve, Vie, VId or XIb. The second possibility is that the vectors §'0/W
where 7, 7 > 0 and i+j = n— N, form a basis for V(n), and hence dim V' (n) =
n — Ny + 1 for n > N,. This happens if and only if 7 is paramodular and of
tvpe IIIb or IVe. Third, the vectors n*W where k > 0 and 2k = n — N, form
a basis for V(n). so that dimV(n) = (14 (—1)")/2 for n > N,. This occurs if
and only if 7 is paramodular and of type Vd. Finally. it can happen that the
vectors 8"'W where i = n — N, form a basis for V(n), and thus dim V(n) = 1
for n > N,. This last possibility happens exactly for quadratic unramified
twists of the trivial representation, i.e., 7 is paramodular and of type IVd. See
Table A.12 for the dimensions of the spaces V' (n) for all irreducible, admissible
representations of GSp(4, F') with trivial character.
Information Carried by a Newform. Finally, our results show that a newform
in a paramodular representation carries important canonical information. Let
7 be a paramodular, irreducible, admissible representation of GSp(4, F') with
trivial central character. We saw above that if 7 is generic, then e(s,7) and
L(s,m) can be expressed in terms of the model-independent invariants Ny,
cry Ar and pr. Thus, if 7 is generic, then a newform for 7 contains all the
information present in (s, 7) and L(s, 7). Next, assume that 7 is non-generic.
Then the theory of zeta integrals is not available, but based on the generic case
it is natural to conjecture the following: if ¢, is the conjectural L-parameter
of 7, then (. ¢, ) and L(s, p,) can be expressed in terms of N , e, A and
jix via the same formulas in Corollary 7.5.5 and Theorem 7.5.3. Of course,
verifying this conjecture requires knowing ¢; this appears to be a problem
since the Langlands correspondence for GSp(4. F) is conjectural, so that the
L-parameters of general representations are not known. However, it turns out
that the desiderata of the conjectural Langlands correspondence, in combina-
tion with the classification of induced representations from [ST], do determine
the L-parameters of some representations of GSp(4, F'), namely those that
are non-supercuspidal. The following theorem implies that any non-generic,
paramodular representation is of this type, and is even non-tempered.



