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Foreword

_ It is always astonishing to see one’s children grow up, and to find that
they can do things which tbeir parents can no longer fully understand.
This book is & good example. It was first conceived by Dr. Frederic
de Hoffmann and mysef as merely a short introduction to the rather
simple-minded calculations on = mesous in Volume II of the oid book
Mesons and Fields, published in 1955. In Dr. Bchweber's hands Volume E;
even then, had developad into & thorough textbook on repormalization in
field theory. It has now become 2 comprehensive treatise on field theory
in general.

In the six years since the publication of the two-volume Mesons and
Fields field theory has made spectacular progress. Some of this progress
was stimulated by experiment, e.g., by the discovery that parity is not
conserved in weak interactions. Much of it, however, consisted in a deeper
sesrch into the foundations of field theory, trying to answer the central
question of relativistic quantum theory which Schweber poses himself in
Chapter 18 of this book: Do solutions of the renormalized equations of
quantum electrodynamics or any meson theories exist? This search has
led to the axiomatic approach to quantum field theory which is probably
the most promising and solid approach now known, and which is deseribed
in Chapter 18. . -

About half of the present book is devoted to the interaction between
fields. This new book contains a thorough discussion of renormslization
theory, starting from the general principles and leading to quantitative
results in the case of electrodynamics. I do not know of any other treat-
ment of this subject which is equally coraplete and rigorous. The physicist
who is interested in applications of field theory will be happy about the
good discussion of the theory of Chew and Low of r-meson scattering,

“ which theory has been so successful in explaining the m-meson phenomena
at low energy and which has superseded the methods presented in Vol-
ume IT Mesons of the older book.
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The book emphasizes general principles, such as symmetry, invariance,
isotopic spin, ete., and develops the theory from these principles. It is
never satisfied with superficial explanations. The student who really

- wants to know and understand field theory, and is willing to work for it,
will find great satisfaction in this book.

_H. A. BETHE

Ithaca, N. Y.
March 1961



Preface

The present book is an outgrowth of an attempted revision of Volume I
of Mesons and Fields which Professors Bethe, de Floffmann and the author
bad written in 1955. The intent at the outset was to revise some of the
contents of that book and to incorporate into the new edition some of the
changes which have occurred in the field since 1955. Unfortunately, due
to the pressure of other duties, Drs. Bethe and de Hoffmann could not
assist in the revision. By the time the present author completed his revi-
sion, what emerged was essentially a new text. With the gracious consent
of Drs. Bethe and de Hoffmann, it is being published under a single
authorship. :

The motivation of the present book, however, is still the same as for
the volume Fields on which it is based, in part: to present in a simple
and self-contained fashion the modern developments of the guantum
theory of fields. It is intended primarily as a textbook for a graduate
course. Its aim is to bring the student to the point where he can go to
the literature to study the most recent advances and start doing research
in quantum field theory. Needless to say, it is also hoped that it will be
of interest to other physicists, particularly solid state and nuclear physicists
wishing to learn field theoretic techniques.

The desire to make the book reasonably self-contained has resulted in
a lengthier manuscript than was originally anticipated. Because it was
my intention to present most of the concepts underlying modern field
theory, it was, nonetheless, decided to include most of the material in
book form. In order to keep the book to manageable length, I have not
included the Schwinger formulation of field theory based on the action
principle. Similarly, only certain aspects of the rapidly growing field of
the theory of dispersion relations are covered. It is with a mention of
the Mandelstam representation for the two-particle scattering amplitude
that the book concludes. However, some of the topics not covered in the
chapters proper are alluded to in the problem section.

Notation

For the reader already accustomed to a variety of different notations,
an indication of cur own notation might be helpful. We have denoted
by an overscore the operation of complex conjugation so that @ denotes
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the complex conjugate of a. Hermitian con]ugatwn is denoted by an
asterisk: (a*)y; = @j. Our space-time metric g, is such that gy = —gyy =
—gn = —gs3 = 1, and we have differentiated between covariant and
contravariant tensors. Our Dirac matrices satisfy the commutation rules
Y™’ + v"y* = 2g*. The adjoint of a Dirac spinor u is denoted by %,
with % = %*90, .
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Quantum Mechanics and Symmetry Principles

Ta. Quantum Mechanical Formalism ; >

Quantum Mechanics, as usually formulated, is based on the postulate
that all the physically relevant information about a physical system at a
given instant of time is derivable from the knowledge of the state function
of the system. This state function is represented by a ray in a complex
Hilbert space, a ray being a direction in Hilbert space: If |¥) is a vector
which corresponds to a physically realizable state, then |¥) and a constant
multiple of [¥) both represent this state. It is therefore customary to
choose an arbitrary representative vector of the ray which is normalized
to one to describe the state. If |¥) is this represcntative, the normaliza-
tion condition is expressed as (¥ | ¥) = 1, where (x | ¥) = (¥ | x) denotes
the scalar product of the vectors |x) and [¥).! 1f the states are normalized,
only a constant factor of modulus one is left undetermined and two vectors
which differ by such a phase factor represent the same state. The system
of states is assumed to form a linear manifold and this linear character
of the state vectors is called the superposition principle. This is perhaps
the fundamental principle of quantum mechanics.

A second postulate of quantum mechanies is that to every measurable
(i.e., observable) property, e, of a system corresponds a self-adjoint oper-
ator a = a* with a complete set of orthonormal eigenfunctions |a’) and
real eigenvalues d/, i.e.,

alay=dla) (1)
(@ | ") = dararr (2
2le)@i=1 ®)

The symbol 8,4+ i8 to be understood as the Kronecker symbo! if a’ and a”
lie in the discrete spectrum and as the Dirac § function, §(a’ — a’), if
either or both lie in the continuous spectrum. Similarly, the summation

! We shall also use the notation (f, g) to denote the scalar product; A denotes the
ecmaplex conjugate of A
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sign in the completeness relation Eq. (3) is to be regarded as an mtegratlon
over the continucus spectrum.’

It is further postulated that if a measurement is performed on the sys-
tem to determine the value of the observable «, the probability of ﬁnding
the system, described by the state vector |¥), to have « with the value o’
is given by [(a’ | ¥)|*. In other words (@’ | ¥) is the probability amplitude
of observing the value a’. A measurement on a system will; in general,
perturb the system and, thus, alter the state vector of the system. If as
a result of a measurement on a system we find that the observable « has
the value a’ the (unnormalized) vector describing the system after the
measurement is |a') (o’ | ¥). An immediate repetition of the measurement,
will thus again yield the value o’ for the observable . These siatements
are, strictly speaking, only correct for the case of an observable with a
nondegenerate discrete eigenvalue spectrum. These rules, however, can
easily be extended to more complex situations.

A measurement of the property « thus channels the system into a state
which is an eigenfunction of the operator a. However, only the probabil-
ity of finding the system in a particular eigenstate is theoretically predict-
able given the state vector |¥) of the system. If this state vector is known,
measurements then allow the verification of the predicted probabilities.
A measurement of the first kind (i.e., measurements which if repeated
immediately give identical results) can also (and perhaps more appropri-
ately) be regarded as the way to prepare a system in a given state.

It is usually the case that several independent measurements must be
made on the system to determine its state. It is therefore assumed in
quantum mechanics that it is always possible to perform a complete set
of compatible independent measurements, i.e., measurements which do not
perturb the values of the other observables previously determined. The
results of all possible compatible measurements can be used to character-
ize the state of the system, as they provide the maximum possible informa-
tion about the system. Necessary and sufficient conditions for two
measurements to be compatible or simultaneously performable is that the
operators corresponding to the properties being measured commute. A
maximal set of observables which all commute with one another defines
a “complete set of commuting operators” [Dirac (1958)]. There is only
one simultaneous eigenstate belonging to any set of eigenvalues of & com-
plete set of commuting observables. ,

The act of measurement is thus fundamental to the formulation and
interpretation of the quantum mechanical formalisza. An analysis of
various kinds of physical measurements at the microscopic level reveals
thdt almost every such physical measurement can be described as a coilision
process. One need only recall that such quaniities as the energy of sta-
tionary states or the lifetime of excited states can be obtained from scat-
tering cross sections.  The realization of the central role of ccllision proc-
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esses in quantum mechanics was of the utmost importance in the recent
development of field theory. It also accounts, in part, for the intensive
study of the quantum theory of scattering in the past decade. ;

A collision process consists of a projectile particle impinging upon a
target particle, interacting with it, and thereby being scattered. Now
initially the projectile particle is far removed from the target. If the
force between the particles is of finite range, as is almost always the case,
the projectile particle will travel initially as a free particle. Similarly,
after it has interacted with the target the scattered particle is once again
outside the range of the force field and thus travels as a free particle to the

~ detector. A scattering experiment measures the angular distribution,
energy, and other compatible observables of the scattered particles far
away from the target, for projectile particles prepared in known states.
Thus in making theoretical predictions, the statistical interpretation has
only to be invoked for initial and final states of freely moving particles or
groups of particles in stationary states. Therein lies the importance of
collision phenomena from a theoretical standpoint: It is never necessary
to give an interpretation of the wave function when the particles are close
together and interacting strongly. These remarks also indicate the reason
for studying the wave mechanical equations describing freely moving
particles which take up Part One of this book.- -

The postulates introduced thus far allow us to deduce the fact that
to every realizable state there corresponds a unique ray in Hilbert space.
For if there were several distinet rays which correspond to a single distinet
state, then if |¥,), |¥,), etc. are normalized representatives of these rays,
by Schwartz’s inequality |[(¥;, %) |* < 1, i.e., the transition probability
rom [¥;) to |¥,) is less than one, which cannot be if they represent the

_ same state. Therefore [¥;), |¥s), ete. must be constant multlples of each
- other. It may, however, be the case that there exist rays in Hilbert space
which do not correspond to any physically realizable state. . This situa-
tion occurs in relativistic field theories or in the second quantized formula-
tion of quantum mechanics. In each of these cases the Hilbert space ‘of
rays can be decomposed into orthogonal subspaces 34, 35, 3¢ « - - such
that the relative phase of the compounent of a vector in each of the sub-
spaces is arbitrary and not measurable. In other words, if we denote -
by |4, 1) the basis vectors which span the Hilbert space 34, and by |B, 7)
the basis vectors which span 3Cz, ete., then no physical measurement can
differentiate between the vector

Saldhe NbIB)e
] J
and the vector

20 A D@ P be? | B i@ -
1 d
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where a, 8, - - - are arbitrary phase factors. The phenomenon responsible
for the breakup of the Hilbert space into several incoherent orthogonal
subspaces is called a superselection rule [Wick (1952), Wigner (1952a),
Bargmann (1953)]. A superselection rule corresponds to the existence of
an operator which is not a multiple of the identity and which commutes
with all observables. Ii the Hilbert space of states, 3¢, decomposes for
example into two orthogonal subspaces, 34 and 3Cs, such that the relative
phases of the components cof the state vector in the two subspaces is com-
pletely arbitrary, then the expectation value of a Hermitian operator that
has matrix elements between these two subspaces is likewise arbitrary
when taken for a state with nonvanishing components in 30, and 3Cs.
Now for a quantity to be measurable it must surely have & well-defined
expectation value in any state. Therefore, a Hermitian operator which
connects two such orthogonal subspaces canuot be measurable. An ex-
ample of this phenomenon is the Hilbert space which consists of the states
of 1, 2, 8,---,m, --- particles each carrving electric charge e. The
orthogonal subsets then consist of the subspaces with definite total charge
and a Hermitian operator connecting subspaces with different total charge
- cannot be observable. The superselection rule operating in this case is
the charge conservation law, or its equivalent statement: gauge invariance
of the first kind (Sec, 7g).

An equivalent formulation of the above consists in the statement that
all rays within a single subspace are realizable but a ray which has com-
ponents in two or more subspaces is not. If not all rays are realizable,
then clearly no measurement can give rise to these nonrealizable states.
They cannot therefore be eigenfunctions of any Hermitian operator which
corresponds o an observable property of the system. To be obscrvable
a Hermitian operator must therefore satisfy certain conditions (super-
sclection rules). Ordinary clementary quantum mechanics cperates in a
single coherent subspace, so that it is possible to distinguish between any
““two rays and all self-adjoint operators are then observable.

Quantum mechanics pext postulates that the position and momentum
operators of a particle obey the following commutation rules:

\

[ql, p)] =y ih‘alf ([yJ =1, 2: 3) (4)

For a particle with no internal degrees of freedom, it is a mathematical
theorem [Von Neumann (1931)] that these operators are irreducible,
meaning that there exists no subspace of the entire Hilbert space which
is left invariant under these operators. This property is equivalent to the
stacements that any operator which commutes with both p and q is a
multiple of the identity and that every operator is a funetion of p and q.
The description of the system in terms of the observables p and q is
complete,
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Finally, quantum mechanics postulates that the dynamical behavior of
the system is described by the Schridinger equation
thd, | ;) = H|; 1) : (5)
where 9, = 3/8t and H, the Hamiltonian operator of the system, corre-
sponds to the translation operator for infinitesimal time translations. By
this is meant the following: Assume that the time evolution of the state
vector can be obtained by the action of an operator U(¢, &) on the initial
state | ; &) such that ‘
10 = Ul | &) (6a)
Ulte, 0o) = 1 . (6b)

Conservation of probability requires that the norm of the vector |t) be
constant in time: :

1) = (| ) ;
= (to | U*@, to) U(t, &) | L) )

and therefore that :
U*@t, t) Ut to) = 1 (8a)

‘This does not yet guarantee that U is unitary. For this to be the case,
the following equation must also hold: :

Ul o) Ut &) = 1 (8b)
This condition will hold if U satisfies the group property:
Ut,t) Ulty, to) = Ut, to) ()

If, in Eq. (9), we set { = {, and assume its vahdxty for t, < t;, we then
obtain

Uto, ) U, b)) = 1 - (10a)
whence .
; Ulto, ) = Ut ) Qo)
and multiplying (10a) on the left by U*(%, t,) using (8) we obtain
Ut ) = U*o, b) = U™t ) (09

so that U is unitary.
If we let ¢ be infinitesimally close to &, with ¢ — & = 4t then to first
order in & we may write

Ulte + 8, &) =1-%m¢ (11)

In order that U be unitary, H must be Hermitian. The dimersion of H
is that of an energy. Equation (6a) for the infinitesimal case thus reads

lto+ 80 = Jt) = =} Hit|t) (122)
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which in the limit as 8 — 0 becomes Eq. (5) since, by definition, ' :
: a]‘iﬂ (Bt)-‘(lt + 8ty — ) = 8|8 : (12b)

15. Schr&iinger and Heise‘nberg Pictures

In the previous remarks about quantum mechanics, we have defined the
- state of the system at a given time ¢ by the resulis of all possible. experi-
ments on the system at that time. This information is contained in the
state vector | f)s = |¥s(f)). The evolution of the system in time is then
described by the time dependence of the state vector which is governed
by the Schrodinger equation .
v Hs | ¥s(t)) = thd. | ¥s(h)) - (13)

The operators corresponding to physical observables, Fig, are time-inde-
pendent; they are the same for all time with 8,Fs = 0. This defines the
Schrodinger picture and the subscript S identifies the picture [Dlrac :
(1958)].

Although the operators are time-independent, their expectatxon value
in any given state will in general be time-dependent. Call :

(Fsy = (¥s(t) | Fs | ¥s(@)) (14)
then ' : '

?,h e (Fs) = (q’s(t) I {Fg, He! | Iws(i)) (15)
In the Sehrodinger picture we call, by definition, Fs that operatbr for which
- i :
(Fs) = 5 (Fs) : - (18)

" Let us mext perform a time-dependent unitary transformation V(#} on
Ws(¢)) which transforms it into the state vector

B0 = V&) | Zs®) - (78)

VO V) = V*O V) = 1 (17b)
g V() = V-1(1) (17¢)

Using Eqs. (13) and (17a) we find that |&(i)) obeys the following equation:
ihd. | @) = [1ha. V(1) - V1)) + V() HsV'(®]| 2(1)) (18]
1f we choose the time-dependent unitary operator, V, to satisfy
—1ha, V(t) = V(&) HsV-'(t) - V(¥) (19)

the transformed state, |®g), will then be time-independent, i.e., 3, | &) = 0.
The operator V(t) being umta.ry, the expectation value of the opere.tor Fg
in terms of |@x) is given by



