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Preface

It is both an honor and a pleasure to hold the 27th Annual Meeting of the
German Association for Pattern Recognition, DAGM 2005, at the Vienna Uni-
versity of Technology, Austria, organized by the Pattern Recognition and Image
Processing (PRIP) Group. We received 122 contributions of which we were able
to accept 29 as oral presentations and 31 as posters. Each paper received three
reviews, upon which decisions were made based on correctness, presentation,
technical depth, scientific significance and originality. The selection as oral or
poster presentation does not signify a quality grading but reflects attractiveness
to the audience which is also reflected in the order of appearance of papers in
these proceedings. The papers are printed in the same order as presented at the
symposium and posters are integrated in the corresponding thematic session.

In putting these proceedings together, many people played significant roles
which we would like to acknowledge. First of all our thanks go to the authors
who contributed their work to the symposium. Second, we are grateful for the
dedicated work of the 38 members of the Program Committee for their effort in
evaluating the submitted papers and in providing the necessary decision support
information and the valuable feedback for the authors. Furthermore, the Pro-
gram Committee awarded prizes for the best papers, and we want to sincerely
thank the donors.

We were honored to have the following three invited speakers at the confer-
ence:

— Jan P. Allebach (School of Electrical and Computer Engineering, Purdue
University): Digital Printing — A Rich Domain for Image Analysis and Pat-
tern Recognition.

— Sven Dickinson (Department of Computer Science, University of Toronto):
Object Categorization and the Need for Many-to-Many Matching.

— Viclav Hlavdé (Center for Machine Perception, Czech Technical University):
Simple Solvers for Large Quadratic Programming Tasks.

We are grateful for economic support from the Austrian Computer Society,
Microsoft Europe, IBM, Advanced Computer Vision, and the Vienna Conven-
tion Bureau. Many thanks to our local support team, Karin Hraby, Ernestine
Zolda and Patrizia Schmidt-Simonsky, who made this symposium possible and
took care of all practical tasks involved in planning DAGM 2005. Special thanks
go to Martin Kampel, who wrote and maintained the symposium website and
supported the organization of the review process. We hope that these proceed-
ings, following the tradition of all DAGM symposiums, will not only impact on
the current research of the readers but will also represent important archival
material.

June 2005 Robert Sablatnig, Walter Kropatsch and Allan Hanbury
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Since 1978 DAGM (German Association for Pattern Recognition) has orga-

nized annual scientific conferences at various venues. The goal of each DAGM
symposium is to inspire conceptual thinking, support the dissemination of ideas
and research results from different areas in the field of pattern recognition, stim-
ulate discussions and the exchange of ideas among experts, and support and
motivate the next generation of young researchers.

DAGM e.V. was founded as a registered research association in September
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Prizes 2004

Olympus Prize

The Olympus Prize 2004 was
awarded to:

Daniel Cremers

for his significant contributions
in the research area of Image
Segmentation.

DAGM Prizes

The main prize was awarded to:

Bastian Leibe and Bernt Schiele
Scale-Invariant Object Categorization Using a Scale-Adaptive Mean Shift Search.

Further DAGM prizes for 2004 were awarded to:

Volker Roth and Tilman Lange
Adaptive Feature Selection in Image Segmentation.

Michael Felsberg and Go6sta Granlund
POI Detection Using Channel Clustering and the 2D Energy Tensor.

Daniel Keysers, Thomas Deselaers and Hermann Ney
Pixel-to-Pixel Matching for Image Recognition Using Hungarian Graph
Matching.
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On Determining the Color of the Illuminant
Using the Dichromatic Reflection Model

Marc Ebner and Christian Herrmann

Universitit Wiirzburg, Lehrstuhl fiir Informatik II,
Am Hubland, 97074 Wiirzburg, Germany
ebnerQinformatik.uni-wuerzburg.de,
http://www2.informatik.uni-wuerzburg.de/staff/ebner/welcome.html

Abstract. The human visual system is able to accurately determine the
color of objects irrespective of the spectral power distribution used to il-
luminate the scene. This ability to compute color constant descriptors is
called color constancy. Many different algorithms have been proposed to
solve the problem of color constancy. Usually, some assumptions have to
be made in order to solve this problem. Algorithms based on the dichro-
matic reflection model assume that the light reflected from an object
results from a combined matte and specular reflection. This assumption
is used to estimate the color of the illuminant. Once the color of the il-
luminant is known, one can compute a color corrected image as it would
appear under a canonical, i.e. white illuminant. A number of different
methods can be used to estimate the illuminant from the dichromatic re-
flection model. We evaluate several different methods on a standard set
of images. Our results indicate that the median operator is particularly
useful in estimating the color of the illuminant. We also found that it is
not advantageous to assume that the illuminant can be approximated by
the curve of the black-body radiator.

1 Motivation

A white wall illuminated by yellowish light reflects more light in the red and
green part than in the blue part of the spectrum. If we use a camera to take
an image of the wall, the sensor of the camera will measure the light reflected
from the wall. Thus, a photograph of the wall will have a yellow cast. A human
observer, however, is able to somehow discount the illuminant. He will perceive
the wall as being white irrespective of the type of illuminant used. This ability to
compute color constant descriptors is known as color constancy [1]. Developing
algorithms for color constancy is obviously very important for consumer photo-
graphy. Another area where color constancy algorithms may be used is machine
based object recognition. In this paper, we will be looking at several different
methods on how to estimate the color of the illuminant from a color image. Once
the illuminant is known, it can be used to compute a color corrected image under
a canonical, i.e. white illuminant. The different methods will be evaluated on a
standard set of test images.

W. Kropatsch, R. Sablatnig, and A. Hanbury (Eds.): DAGM 2005, LNCS 3663, pp. 1-8, 2005.
© Springer-Verlag Berlin Heidelberg 2005



2 M. Ebner and C. Herrmann

2 The Dichromatic Reflection Model

The dichromatic reflection model assumes that object color is a result of a matte
reflection in combination with a specular reflective component [2,3,4]. The overall
color of the object is determined by the matte reflection whereas specular high-
lights are caused by the specular reflection. These highlights occur whenever the
light is reflected such that it directly enters the camera. Since the light from the
light source is reflected directly into the camera it can be used to estimate the
color of the illuminant.

Let S(\) be the vector with the response functions of the sensor. For an
RGB-sensor, we have S = [S;()), Sg(A), Sb(A)] where the functions S;(A) with
i € {r,g,b} specify the sensor’s response characteristics to light in the red, green,
and blue part of the spectrum. Let F()) be the light falling into the sensor, then
the response of the sensor is given by

+oo
I= E(X)S(M)dA.

— 00

Under the dichromatic reflection model, the response of the sensor is given by

+o00
1— / (sm Rar W) E(A) + ss Rs(\)E(A)) S(\)dA
—o0

where Rjr(A) is the object reflectance with regard to the matte reflection, Rg())
is the object reflectance with regard to the specular reflection, s); and sg are two
scaling factors which depend on the object geometry and E()) is the irradiance
falling onto the object [4].

Let us now assume that the response functions are very narrow, i.e. they can
be modeled by delta functions S;(A) = §(A— ;). Such ideal sensors only respond
to a single wavelength \; with ¢ € {r, g,b}. This gives us

I; = sy Ry Ei + ssRsiE,.

Assuming that the specular reflection behaves like a perfect mirror, i.e. Rg; = 1,
we obtain
I; =syRME; + ssE;.

Let Cy = [Rp,rEr, Ru,gEg, Ry b Eb) be the measured matte color of the object
and let Cs = [E,, Egy, Ep] be the color of the illuminant. We now see that the
color measured by the sensor is restricted to the linear combination of the matte
color of the object point Cys as seen under illuminant E and the color of the
illuminant Cgs. The two vectors Cys and Cg define a plane inside the RGB color
space [3].

By computing chromaticities, the three-dimensional data points are projected
onto the plane 7 4+ g+ b = 1. This gives us a line in chromaticity space. The two
points which define the line are the chromaticities of the measured object color
[ro,g0]” and the chromaticities of the color of the illuminant [rg, gg]T

(5) =+ () +0-9)
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for some scaling factor s. The data points which belong to a uniformly colored
surface will all be distributed along this, so called, dichromatic line. We now
assume that the illuminant is uniform over the entire scene. In this case, all
dichromatic lines will have one point in common, the color of the illuminant.

3 Natural Illuminants

If we know the correspondence between data points and surfaces, we can compute
the dichromatic line for each surface. The dichromatic line can be found by
doing a linear regression on the data. Alternatively we can also compute the
covariance matrix and then locate the eigenvector which corresponds to the
largest eigenvalue to determine the orientation of the dichromatic line. According
to Finlayson and Schaefer [4] the algorithms based on the dichromatic reflection
model perform well only under idealized conditions. The estimated illuminant
turns out not to be very accurate. If small amounts of noise are present in
the data then the computed intersection may be very different from the actual
intersection. Finlayson and Schaefer note that the method works well for highly
saturated surfaces under laboratory conditions but does not work well for real
images. In their work, they assumed the images to be pre-segmented.

They suggest to compute the intersection of the dichromatic lines with the
curve of the black-body radiator in order to make the method more robust. Many
natural light sources can be approximated by a black-body radiator. The power
spectrum E(\,T') of a black-body radiator depends on the temperature 7. It
can be described by the following equation [5,6]

he? 1

2
BT =35 (eFaT> — 1)

where T is the temperature of the black-body measured in Kelvin, A = 6.626176-
10—34Js is Planck’s constant, kg = 1.3806 - 10“23% is Boltzmann’s constant,
and ¢ = 2.9979 108% is the speed of light. Many natural light sources such as
the flame of a candle, light from a light bulb or sunlight can be approximated
by the power spectrum of the black-body radiator. The chromaticities of day-
light also follows the curve of the black-body radiator closely [7]. Plotting the
chromaticities of the black-body radiator in CIE XYZ color space, one obtains
a curve which can be approximated by a quadratic equation.

Using this approximation, we can compute the intersection between the
dichromatic line and the curve of the black-body radiator. As a result, one either
obtains none, one or two points of intersection. If the dichromatic line does not
intersect the curve of the black-body radiator, then one can locate the closest
point between the line and the curve of the black-body radiator. If two intersec-
tions are found, one can use some heuristics to select one of the two as the correct
intersection. Using the constraint that the illuminant can be approximated by
the curve of the black-body radiator, in theory it is possible, to determine the
color of the illuminant from a single surface. Algorithms based on the gray world
assumption [8,9,10] in contrast, require that the scene be sufficiently diverse.
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4 Estimating the Color of the Illuminant by Segmentation
and Filtering

Risson [11] extended the algorithm of Finlayson and Schaefer by also addressing
the segmentation problem. Risson proposed to determine the illuminant by first
segmenting the image and then filtering out regions which are not in line with the
dichromatic reflection model. As a first step, noise is removed by pre-filtering the
image using a Gaussian or median filter. Then the image is segmented. Regions
which do not agree with the dichromatic reflection model, such as achromatic
regions or regions which belong to the sky, are removed. In order to compute the
direction of the dichromatic line reliably, the region has to have a certain size.
Risson [11] suggested to remove all regions with a saturation less than 12%. For
each remaining region, the dichromatic line is computed.

The dichromatic line can be computed by performing a linear regression on
the x- and y-coordinates in CIE XYZ chromaticity space. We can also compute
the covariance matrix for the pixel colors which belong to a single region. Using
singular value decomposition, the largest eigenvalue tells us the direction of the
dichromatic line. Let e; be the normalized eigenvector which corresponds to the
largest eigenvalue obtained for region j. The dichromatic line £; of region j is
then given by

Ej = {aj + sej|with ERS R}
where a; is the average chromaticity of the region. In theory, the illuminant is
located at the point where all dichromatic lines £; intersect. In practice, however,
the dichromatic lines do not intersect in a single point because of noise in the
data. It may also be that some of the computed lines are not caused by pure
matte reflections in combination with specular reflections.

It may be possible to develop a classifier to rule out lines which are not in
agreement with the dichromatic reflection model. A simpler method is to use
the large number of dichromatic lines obtained from the image and to gather
statistical evidence for the actual point of intersection. The exact method on how
to determine the location of the point of intersection is not specified by Risson
(11]. In finding the point of intersection, the curve of the black-body radiator
may or may not be used to constrain the set of possible illuminants.

A simple method with no constraints on the color of the illuminant would
be to compute the intersection for all possible combinations between two dichro-
matic lines. This gives us a set of intersections [12]. Let n be the number of
dichromatic lines of the image. This gives us %n(n — 1) points of intersection
Pi = [2i,y:] where z; and y; are the chromaticities in CIE XYZ color space.

1
{p:i|with 7 € [1, ..., En(n —-1)}

From this set we can estimate the actual point of intersection by computing the
average of the points of intersection. In this case, the position of the illuminant
p is given by

2
p:n(n——l)g—:pi'



