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PREFACE

Many observed effects in semiconducting materials are determined in
part by the densities of electrons and holes in the various bands and
levels. A carrier density cannot of course be measured directly; the
magnitude of an observed quantity is always concerned with other
attributes of carriers as well as their density. . (Thus electrical conduc-
tivity depends on the densities of electrons and on their mobilities.)
Several recently published books (e.g. 1953:4, 1958:9, 1960:19) dwell
at length on the relationships between carrier densities and transport
effects, and the subject matter of this volume is complementary to that
topic.

The book is divided into two parts. Part I, of three chapters, provides
introductory material on the electron theory of solids and then dis-
cusses carrier statistics for semiconductors in thermal equilibrium. Of
course a solid cannot be in true thermodynamic equilibrium if any
electrical current is passed; but when currents are reasonably small
the distribution function is but little perturbed, and the carrier distri-
bution for such a “quasi-equilibrium” condition is inappreciably
different from that of thermal equilibrium itself. Thus the results of
Part I are not invalidated when the properties of a semiconductor are
measured using small current densities.

The seven chapters of Part I consider non-equilibrium statistics, for
semiconductors with appreciable excess carrier densities. The various
kinds of recombination mechanism are considered in turn, and the
consequences discussed for steady state and transient situations. No
attempt is made to expose the special problems of semiconductor con-
tacts and junctions, since these have been treated so extensively in other
recent volumes (e.g. 1957:32, 1960:17).

The subject matter of this book is deliberately restricted in scope so
that the volume may be of maximum value to scientists with an active
interest in the basic properties of semiconducting materials. The intro-
ductory material of Chapter 1 should help to make the bock useful to
those who are approaching semiconductors as a new field of
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specialization. Appreciation of Chapter 1 is aided by some awareness
of basic quantum-mechanical principles, but a detailed knowledge
of that subject is certainly not necessary in order to make use of
the results presented here.

Dr. Henisch first suggested the writing of this book in 1952, and I
have been conscious since that time of his encouragement. Enough is
now known about recombination processes to permit a hope that this
volume might remain useful for some time.

I should like to express my appreciation of the help glvcn by a
number of other colleagues and friends. My first interest in thermal
equilibrium carrier statistics was stimulated by Mr. G. King, Mr. T. R.
Scott and Mr. A. C. Sim. It is a pleasure to acknowledge the
encouragement given by Dr. V. W. Bearinger and Dr. F. J. Larsen to
basic recombination studies at Honeywell. In both the experimental
and theoretical aspects of these studies I have enjoyed a close collabora-
tion with Dr. K. C. Nomura, and many of the ideas in Chapters 8 and
10 were developed jointly with Dr. Nomura. His comments on this
manuscript, and those of Dr. S. R. Morrison Dr. A. Nussbaum, and
Professor P. T. Lansberg have helped in the elimination of many errors
and obscurities. The difficult task of typing the manuscript has been
undertaken by Mrs. C. Lehr, and that of preparing the figures by Mrs. V.
Squier; hearty thanks are due to both. My wife, June Blakemore, has
been forced into the role of an observer as the writing process has
enveloped her husband’s existence for many months; her faith and
constant encouragement have indeed been appreciated.

J.S.B.
Hopkins, Minnesota, U.S.A.
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PART I

SEMICONDUCTORS IN THERMAL
EQUILIBRIUM






Chapter 1

BASIC CONCEPTS IN THE ELECTRON THEORY
OF SOLIDS

1.1 CLASSICAL THEORIES OF METALLIC CONDUCTION

CoNSIDERABLE insight into the nature and behavior of semiconductors
(and metals) comes from an examination of the band theory of solids.
This theory can be regarded as arising naturally from the broadenmg,
of the discrete quantized energy levels of an isolated atom, but it is also
useful to observe the development of band theory from the so-called
collective electron point of view. We accordingly start with a review of
the classical and quantized free electron models of metallic conduction.
This discussion serves to introduce in historical sequence the important
ideas which led to the band model and to an explanation of the dis-
tinction between metals, semiconductors and insulators.

1.1.1 Drubpr’s MoODEL

Not long after the discovery of the electron, the suggestion was first
made that the outer electrons of each atom in a metal might not be
tightly bound to their individual atomic cores, but might rather form a
free electron gas, collectively owned by the entire set of atoms which
. make up a crystal. That electrons should be free to move anywhere in
a crystal seems reasonable in view of the validity of Ohm’s law; and
that their density might be comparable with that of atoms is indicated
by the very large electrical and thermal copductivities of metals.
Drude (1904:1) investigated the consequences of a simple model in
which all the free electrons moved with a classical momentum
p = (3mokT)1/2 and were presumed to be scattered in random directions

3



4 THE ELECTRON THEORY OF SOLIDS

by the positive ion cores. The model did not have any features from
which the absolute strength of this scattering could be determined, thus
conductivities could be quoted only in relative terms. Drude’s model
did, however, give a result for the ratio of thermal to electrical con-
ductivities:

e 3(5)27' (111.1)

o é

which was in surprisingly good agreement with the experimental law
of Wiedemann and Franz (1853:1).

1.1,2 LoreNTZ’Ss MODEL

Attempts were made by Lorentz (summarized in 1909:1) to improve
upon Drude’s model, particularly in recognizing that not all free
electrons will move with the same speed and momentum. Of course,
from general thermodynamic principles it is evident that if a system
contains a large number of particles (such as electrons), then the par-
ticles will normally tend to find positions of lowest energy. At the same
time, for any temperature other than absolute zero, particles are con-
tinually receiving and emitting energy in a way which tends to oppose
the process of settling towards minimum energy.

Lorentz assumed that electron velocities and momenta varied :n
accordance with the classical Maxwell-Boltzmann distribution law.
For a classical population of N free electrons in thermal equilibrium,
the number with momenta in an infinitesimal range dp is

4w Np? - —pe
@mmok T2~ ©F l2mokT

The Lorentz theory considered the deformation of this distribution in
applied fields, and the manner in which a perturbed distribution tends
to return to normal. By an ironic chance, these sophisticated calcula-
tions yielded apparently less satisfactory results than Drude’s crude
model in several respects:

dN =

] .dp (112.1)

(a) Drude had obtained a ratio of thermal to electrical conductivity
of 3(k[e)2T, in good agreement with the experimental law of Wiede-
mann and Franz. Lorentz’s result was one-third smaller.



QUANTUM STATISTICS 5

(b) The more elaborate theory made it impossible to explain the
actual temperature dependence of conductivities in ordinary metals if
scattering was based on any central law of force, elastic or inelastic!

(c) Lorentz was able to predict values for other metallic properties
such as thermoelectric, magnetoresistive and Hall coefficients. The
Hall effect expression

R = —3n/8ne (112.2)

confirmed that free electrons are as numerous in metals as atoms—yet
this served only to deepen the mystery that the free electron gas does
not give metals a large additional specific heat.

From the foregoing, it will be seen that classical theory could do
little to account for electronic behavior in metals—let alone semi-
conductors, whose existence was barely noted at the beginning of this
century. It was not until the 1920’s that any significant advances were
made by the application of quantum ideas to the problem.

1.2 QUANTUM STATISTICS AND THE FREE
ELECTRON THEORY

Arnold Sommerfeld (1928:1) retained a number of the important
features in Drude’s and Lorentz’s earlier theories. Thus, like them, he
assumed that free electrons enjoy a constant potential energy — W
inside a metal. (Whereas the potential experienced by an electron must
actually depend on its relationship to other free electrons and to the
periodic array of positively ionized atomic cores.) Also he was forced
to accept that some form of scattering takes place to set the absolute
value of the resistivity, yet he could not cite the specific cause of this
scattering. Even so, a number of mysteries on the classical theories
were easily explained by Sommerfeld’s model, based on quantum
statistics.

1.2.1 p-Space AND k-SpAce. THE DENSITY OF STATES

Consider a space for which the co-ordinates are the x, y and z com-
ponents of electron momentum (Fig. 12.1). An electron of any momen-
tum p can be represented by the vector from 0 to some point in p-space.
This electron has kinetic energy E = p2/2myp, and it is evident that a
sphere centered on the origin of p-space will be a constant energy
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surface.t Applying the concept of p-space to the classical distribution
(112:1), it can be seen that the density of electrons in p-space for a given
energy is

v N [ -pt ]
4np? . dp  (2emokT P2 T |2mokT
N _E
= Qmmok T “p[ kT] (121.1)

when classical conditions hold.
In expressing the result (121:1), it is assumed that an electron may
have any momentum and energy. This does not hold true when the

Pz

Fic. 12.1. Momentum space. The vector p represents the momentum of
a particle, p = +/(ps®+py?+p:?). Thus any sphere centered on the origin
of momentum space is a surface of constant kinetic energy.

additional postulates of quantum theory are taken into account.
According to quantum theory, when the motion of an electron is re-
stricted by boundary conditions (as it is for an electron moving within

t In discussing the free electron model, the origin of energy is arbitrarily set as that
of zero electronic kinetic energy. This is convenient for our present purposes since we
are concerned only with differences of kinetic energies, and do not discuss problems
of thermionic emission, contact potential, etc. (for which the height W of the surface
potential barrier would be important). In discussions of the more complicated band
models later in the book, different criteria of the most convenient origin for energy
are encountered, and adopted where appropriate.
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a crystal of finite size), there is a finite number of possible electron
states (distinguishable patterns of electron behavior} within any
specified range of energy and momentum.

In order to determine how many separate quantum states there are
within a range of momentum, it is convenient to recall that—in quan-
tum-mechanical terms—a free electron of momentum p can be
represented by a wave of wavelength A = 2/p, or wave-vector k = p/k.
Thus as a companion to p-space, we can construct the corresponding
k-space (Fig. 12.2), in which a vector k shows the direction and period-
icity of the wave representing an electron of component momenta

Ky

N
i
/

Fic. 12.2, k-space. The vector k represents the veriodicity and direction of
thc wave representing an clectron for which &z = (po/5), &y = (p,,,h),
= (p./#%). For free electrons a sphere of radius £, centered on the origin,

is a surface of constant energy.

by = bikg, py = Biky, and p, = kk,. The kinetic energy of such an
electron can bie written

E = 2k hy k) = (121.2

¢ = —(Ks~+ y‘}z £ reme iel.
2 an )
It is necessary to be temporarily concerned not only with the energies
but also with the wave-functions ¢ of electrons. According te wave-
mechanical principles [for a very readable account see (1957:1)], ¢ is



