Alan Dearle
Susan Eisenbach (Eds.)

Component
Deployment

Third International Working Conference, CD 2005
Grenoble, France, November 2005
Proceedings

LNCS 3798

§9-53

@_ Springer

Alan Dearle Susan Eisenbach (Eds.)

Component
Deployment

Third International Working Conference, CD 2005
Grenoble, France, November 28-29, 2005
Proceedings

E200600978

@ Springer

Volume Editors

Alan Dearle

University of St Andrews, School of Computer Science
North Haugh, St Andrews, Fife KY16 9SX, UK
E-mail: al@dcs.st-andrews.ac.uk

Susan Eisenbach

Imperial College London, Department of Computing
180 Queens Gate, London, SW7 2BZ, UK

E-mail: s.eisenbach@imperial.ac.uk

Library of Congress Control Number: 2005936342

CR Subject Classification (1998): D.2, E3,D.1,D.3,D.4

ISSN 0302-9743
ISBN-10 3-540-30517-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-30517-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11590712 06/3142 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland
John C. Mitchell
Stanford University, CA, USA
Moni Naor
Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz
University of Bern, Switzerland
C. Pandu Rangan
Indian Institute of Technology, Madras, India
Bernhard Steffen
University of Dortmund, Germany
Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3798

Preface

This volume of Lecture Notes in Computer Science contains the proceedings of the
3" Working Conference on Component Deployment (CD 2005), which took place
from 28 to 29, November 2005 in Grenoble, France, and co-located with
Middleware 2005. CD 2005 is the third international conference in the series, the
first two being held in Berlin and Edinburgh in 2002 and 2004, respectively. The
proceedings of both these conferences were also published by Springer in the
Lecture Notes in Computer Science series and may be found in volumes 2370 and
3083.

Component deployment addresses the tasks that need to be performed after
components have been developed and addresses questions such as:

e What do we do with components after they have been built?
e How do we deploy them into their execution environment?
¢ How can we evolve them once they have been deployed?

CD 2005 brought together researchers and practitioners with the goal of develo-
ping a better understanding of how deployment takes place in the wider context. The
Program Committee selected 15 papers (12 long papers, three short papers) out of 29
submissions. All submissions were reviewed by at least three members of the
Program Committee. Papers were selected based on originality, quality, soundness
and relevance to the workshop.

We would like to thank the members of the Program Committee (Mikio Aoyama,
Noureddine Belkhatir, Judy Bishop, Paul Brebner, Wolfgang Emmerich, Thomas
Gschwind, Richard Hall, Andre van der Hoek, Nenad Medvidovic, Andrea Polini and
Peter Sewell) for providing timely and significant reviews, and for their substantial
effort in making CD 2005 a successful workshop.

We would also like to thank the following additional reviewers: Doug Palmer, Sam
Malek, Chris Mattmann, Andrew J. McCarthy, Marija Mikic-Rakic, Chiyoung Seo
and Rob Chatley for their assistance in reviewing papers.

The CD 2005 submission and review process was supported by the Cyber Chair
Conference Management System. We are indebted to the services of Borbola Online
Conference Services and in particular Richard van de Stadt for their excellent support
in managing this system. Andrew J. McCarthy must also be thanked for his diligent
efforts in collating the papers in these proceedings.

The workshop was held in conjunction with Middleware 2005. We would like to
acknowledge the help from the Middleware 2005 Organizing Committee for their
assistance, during the organization of CD 2005, in creating this co-located event.

We would also like to acknowledge the prompt and professional support from
Springer, who published these proceedings in printed and electronic volumes as part
of the Lecture Notes in Computer Science series.

September 2005 Alan Dearle
Susan Eisenbach

Organization

Program Committee

Program Chairs

e Alan Dearle
University of St Andrews, UK
al@dcs.st-and.ac.uk

e Susan Eisenbach
Imperial College, London, UK
sue@doc.ic.ac.uk

Program Committee Members

e Mikio Aoyama
Network Information and Software Engineering Laboratory, Japan
mikio.aoyama @nifty. com

e Noureddine Belkhatir
IMAG LSR, Grenoble, France
Noureddine.Belkhatir@imag. fr

¢ Judy Bishop
University of Pretoria, South Africa
Jbishop@cs.up.ac.za

e Paul Brebner
CSIRO ICT Centre, Canberra, Australia
Paul. Brebner@csiro.au

e Wolfgang Emmerich
University College London, UK
w.emmerich@cs.ucl.ac.uk

e Thomas Gschwind
Technische Universitidt Wien, Austria
thomasg @ieee.org

e Richard Hall
IMAG LSR, Grenoble, France
heavy@ungoverned.org

e Andre van der Hoek
University of California, Irvine, USA
andre @ics.uci.edu

e Nenad Medvidovic
University of Southern California, Los Angeles, USA
neno@usc.edu

VIII Organization

e Andrea Polini
CNR, Pisa, Italy
andrea.polini@isti.cnr.it

e Peter Sewell
University of Cambridge, UK
Peter.Sewell@cl.cam.ac.uk

e Kurt Wallnau
Carnegie Mellon University, Pittsburgh, USA
kcew@sei.cmu.edu

e Alexander Wolf
University of Lugano, Switzerland
alexander.wolf@unisi.ch

Lecture Notes in Computer Science

For information about Vols. 1-3702

please contact your bookseller or Springer

Vol. 3835: G. Sutcliffe, A. Voronkov (Eds.), Logic for Pro-
gramming, Artificial Intelligence, and Reasoning. XIV,
744 pages. 2005. (Subseries LNAI).

Vol. 3814: M. Maybury, O. Stock, W. Wahlster (Eds.), In-
telligent Technologies for Interactive Entertainment. XV,
342 pages. 2005. (Subseries LNAI).

Vol. 3807: M. Dean, Y. Guo, W. Jun, R. Kaschek, S. Kr-
ishnaswamy, Z. Pan, Q.Z. Sheng (Eds.), Web Information
Systems Engineering — WISE 2005 Workshops. XV, 275
pages. 2005.

Vol. 3806: A.H. H. Ngu, M. Kitsuregawa, E.J. Neuhold,
J.-Y. Chung, Q.Z. Sheng (Eds.), Web Information Systems
Engineering — WISE 2005. XXI, 771 pages. 2005.

Vol. 3805: G. Subsol (Ed.), Virtual Storytelling. XII, 289
pages. 2005.
Vol. 3799: M. A. Rodriguez, L.F. Cruz, S. Levashkin, M.J.

Egenhofer (Eds.), GeoSpatial Semantics. X, 259 pages.
2005.

Vol. 3798: A. Dearle, S. Eisenbach (Eds.), Component
Deployment. X, 197 pages. 2005.

Vol. 3795: H. Zhuge, G.C. Fox (Eds.), Grid and Coopera-
tive Computing - GCC 2005. XXI, 1203 pages. 2005.
Vol. 3793: T. Conte, N. Navarro, W.-m.W. Hwu, M. Valero,
T. Ungerer (Eds.), High Performance Embedded Architec-
tures and Compilers. XIII, 317 pages. 2005.

Vol. 3792: 1. Richardson, P. Abrahamsson, R. Messnarz

(Eds.), Software Process Improvement. VIII, 215 pages.
2005.

Vol. 3791: A. Adi, S. Stoutenburg, S. Tabet (Eds.), Rules
and Rule Markup Languages for the Semantic Web. X,
225 pages. 2005.

Vol. 3790: G. Alonso (Ed.), Middleware 2005. XIII, 443
pages. 2005.

Vol. 3789: A. Gelbukh, A. de Albornoz, H. Terashima-
Marin (Eds.), MICAI 2005: Advances in Artificial Intel-
ligence. XXVI, 1198 pages. 2005. (Subseries LNAI).

Vol. 3785: K.-K. Lau, R. Banach (Eds.), Formal Methods
and Software Engineering. XIV, 496 pages. 2005.

Vol. 3784:). Tao, T. Tan, R.W. Picard (Eds.), Affective
Computing and Intelligent Interaction. XIX, 1008 pages.
2005.

Vol. 3781: S.Z. Li, Z. Sun, T. Tan, S. Pankanti, G. Chollet,
D. Zhang (Eds.), Advances in Biometric Person Authen-
tication. XI, 250 pages. 2005.

Vol. 3780: K. Yi (Ed.), Programming Languages and Sys-
tems. XI, 435 pages. 2005.

Vol. 3779: H. Jin, D. Reed, W. Jiang (Eds.), Network and
Parallel Computing. XV, 513 pages. 2005.

Vol. 3777: O.B. Lupanov, O.M. Kasim-Zade, A.V.
Chaskin, K. Steinhofel (Eds.), Stochastic Algorithms:
Foundations and Applications. VIII, 239 pages. 2005.

Vol. 3775: 1. Schonwilder, J. Serrat (Eds.), Ambient Net-
works. XIII, 281 pages. 2005.

Vol.3773: A. Sanfeliu, M.L. Cortés (Eds.), Progress in Pat-
tern Recognition, Image Analysis and Applications. XX,
1094 pages. 2005.

Vol. 3772: M. Consens, G. Navarro (Eds.), String Process-
ing and Information Retrieval. XIV, 406 pages. 2005.

Vol. 3771: J.M.T. Romijn, G.P. Smith, J. van de Pol (Eds.),
Integrated Formal Methods. XI, 407 pages. 2005.

Vol. 3770: J. Akoka, S.W. Liddle, I.-Y. Song, M.
Bertolotto, I. Comyn-Wattiau, W.-J. van den Heuvel, M.
Kolp, J. Trujillo, C. Kop, H.C. Mayr (Eds.), Perspectives
in Conceptual Modeling. XXII, 476 pages. 2005.

Vol. 3768: Y.-S. Ho, H.J. Kim (Eds.), Advances in Mulit-
media Information Processing - PCM 2005, Part II.
XXVIII, 1088 pages. 2005.

Vol. 3767: Y.-S. Ho, H.J. Kim (Eds.), Advances in
Mulitmedia Information Processing - PCM 2005, Part 1.
XXVIII, 1022 pages. 2005.

Vol. 3766: N. Sebe, M.S. Lew, T.S. Huang (Eds.), Com-
puter Vision in Human-Computer Interaction. X, 231
pages. 2005.

Vol. 3765: Y. Liu, T. Jiang, C. Zhang (Eds.), Computer
Vision for Biomedical Image Applications. X, 563 pages.
2005.

Vol. 3764: S. Tixeuil, T. Herman (Eds.), Self-Stabilizing
Systems. VIII, 229 pages. 2005.

Vol. 3762: R. Meersman, Z. Tari, P. Herrero (Eds.), On the
Move to Meaningful Internet Systems 2005: OTM 2005
Workshops. XXXI, 1228 pages. 2005.

"Vol. 3761: R. Meersman, Z. Tari (Eds.), On the Move to

Meaningful Internet Systems 2005: CooplS, DOA, and
ODBASE, Part II. XXVII, 653 pages. 2005.

Vol. 3760: R. Meersman, Z. Tari (Eds.), On the Move to
Meaningful Internet Systems 2005: CooplS, DOA, and
ODBASE, Part I. XXVII, 921 pages. 2005.

Vol. 3759: G. Chen, Y. Pan, M. Guo, J. Lu (Eds.), Parallel
and Distributed Processing and Applications - ISPA 2005
Workshops. XIII, 669 pages. 2005.

Vol. 3758: Y. Pan, D.-x. Chen, M. Guo, J. Cao, J.J. Don-
garra (Eds.), Parallel and Distributed Processing and Ap-
plications. XXIII, 1162 pages. 2005.

Vol. 3757: A. Rangarajan, B. Vemuri, A.L. Yuille (Eds.),
Energy Minimization Methods in Computer Vision and
Pattern Recognition. XII, 666 pages. 2005.

Vol. 3756: J. Cao, W. Nejdl, M. Xu (Eds.), Advanced Par-
allel Processing Technologies. XIV, 526 pages. 2005.

Vol. 3754: J. Dalmau Royo, G. Hasegawa (Eds.), Man-
agement of Multimedia Networks and Services. XII, 384
pages. 2005.

Vol. 3753: O.F. Olsen, L.M.J. Florack, A. Kuijper (Eds.),
Deep Structure, Singularities, and Computer Vision. X,
259 pages. 2005.

Vol. 3752: N. Paragios, O. Faugeras, T. Chan, C. Schnorr
(Eds.), Variational, Geometric, and Level Set Methods in
Computer Vision. XI, 369 pages. 2005.

Vol. 3751: T. Magedanz, E.R. M. Madeira, P. Dini (Eds.),
Operations and Management in IP-Based Networks. X,
213 pages. 2005.

Vol. 3750: J.S. Duncan, G. Gerig (Eds.), Medical Image

Computing and Computer-Assisted Intervention — MIC-
CAI 2005, Part II. XL, 1018 pages. 2005.

Vol. 3749: J.S. Duncan, G. Gerig (Eds.), Medical Image
Computing and Computer-Assisted Intervention — MIC-
CAI 2005, Part I. XXXIX, 942 pages. 2005.

Vol. 3748: A. Hartman, D. Kreische (Eds.), Model Driven
Architecture — Foundations and Applications. 1X, 349
pages. 2005.

Vol. 3747: C.A. Maziero, J.G. Silva, A.M.S. Andrade,

F.M.d. Assis Silva (Eds.), Dependable Computing. XV,
267 pages. 2005.

Vol. 3746: P. Bozanis, E.N. Houstis (Eds.), Advances in
Informatics. XIX, 879 pages. 2005.

Vol. 3745: J.L. Oliveira, V. Maojo, F. Martin-Sanchez, A.S.
Pereira (Eds.), Biological and Medical Data Analysis. XII,
422 pages. 2005. (Subseries LNBI).

Vol. 3744: T. Magedanz, A. Karmouch, S. Pierre, I. Ve-
nieris (Eds.), Mobility Aware Technologies and Applica-
tions. XIV, 418 pages. 2005.

Vol. 3740: T. Srikanthan, J. Xue, C.-H. Chang (Eds.),
Advances in Computer Systems Architecture. XVII, 833
pages. 2005.

Vol. 3739: W. Fan, Z.-h. Wu, J. Yang (Eds.), Advances
in Web-Age Information Management. XXIV, 930 pages.
2005.

Vol. 3738: V.R. Syrotiuk, E. Chavez (Eds.), Ad-Hoc, Mo-
bile, and Wireless Networks. XI, 360 pages. 2005.

Vol. 3735: A. Hoffmann, H. Motoda, T. Scheffer (Eds.),
Discovery Science. XVI, 400 pages. 2005. (Subseries
LNAI).

Vol. 3734: S. Jain, H.U. Simon, E. Tomita (Eds.), Algo-
rithmic Learning Theory. XII, 490 pages. 2005. (Subseries
LNAI.

Vol. 3733: P. Yolum, T. Giingor, F. Giirgen, C. Ozturan
(Eds.), Computer and Information Sciences - ISCIS 2005.
XXI, 973 pages. 2005.

Vol. 3731: F. Wang (Ed.), Formal Techniques for Net-
worked and Distributed Systems - FORTE 2005. XII, 558
pages. 2005.

Vol. 3729: Y. Gil, E. Motta, V. R. Benjamins, M.A. Musen
(Eds.), The Semantic Web — ISWC 2005. XXIII, 1073
pages. 2005.

Vol. 3728: V. Paliouras, J. Vounckx, D. Verkest (Eds.), In-
tegrated Circuit and System Design. XV, 753 pages. 2005.

Vol. 3726: L.T. Yang, O.F. Rana, B. Di Martino, J.J. Don-
garra (Eds.), High Performance Computing and Commu-
nications. XXVI, 1116 pages. 2005.

Vol. 3725: D. Borrione, W. Paul (Eds.), Correct Hardware
Design and Verification Methods. XII, 412 pages. 2005.

Vol. 3724: P. Fraigniaud (Ed.), Distributed Computing.
X1V, 520 pages. 2005.

Vol. 3723: W. Zhao, S. Gong, X. Tang (Eds.), Analysis and
Modelling of Faces and Gestures. XI, 4234 pages. 2005.

Vol. 3722: D. Van Hung, M. Wirsing (Eds.), Theoretical
Aspects of Computing — ICTAC 2005. XIV, 614 pages.
2005.

Vol. 3721: A. Jorge, L. Torgo, P.B. Brazdil, R. Camacho, J.
Gama (Eds.), Knowledge Discovery in Databases: PKDD
2005. XXIII, 719 pages. 2005. (Subseries LNAI).

Vol. 3720: J. Gama, R. Camacho, P.B. Brazdil, A. Jorge,
L. Torgo (Eds.), Machine Learning: ECML 2005. XXIII,
769 pages. 2005. (Subseries LNAI).

Vol. 3719: M. Hobbs, A.M. Goscinski, W. Zhou (Eds.),
Distributed and Parallel Computing. XI, 448 pages. 2005.

Vol. 3718: V.G. Ganzha, E.-W. Mayr, E.V. Vorozhtsov
(Eds.), Computer Algebra in Scientific Computing. XII,
502 pages. 2005.

Vol. 3717: B. Gramlich (Ed.), Frontiers of Combining Sys-
tems. X, 321 pages. 2005. (Subseries LNAI).

Vol. 3716: L. Delcambre, C. Kop, H.C. Mayr, J. Mylopou-
los, O. Pastor (Eds.), Conceptual Modeling — ER 2005.
XVI, 498 pages. 2005.

Vol. 3715: E. Dawson, S. Vaudenay (Eds.), Progress in
Cryptology — Mycrypt 2005. XI, 329 pages. 2005.

Vol. 3714: H. Obbink, K. Pohl (Eds.), Software Product
Lines. XIII, 235 pages. 2005.

Vol. 3713: L.C. Briand, C. Williams (Eds.), Model Driven
Engineering Languages and Systems. XV, 722 pages.
2005.

Vol. 3712: R. Reussner, J. Mayer, J.A. Stafford, S. Over-
hage, S. Becker, P.J. Schroeder (Eds.), Quality of Soft-
ware Architectures and Software Quality. XIII, 289 pages.
2005.

Vol. 3711: E Kishino, Y. Kitamura, H. Kato, N. Nagata
(Eds.), Entertainment Computing - ICEC 2005. XXIV,
540 pages. 2005.

Vol. 3710: M. Barni, 1. Cox, T. Kalker, H.J. Kim (Eds.),
Digital Watermarking. XII, 485 pages. 2005.

Vol. 3709: P. van Beek (Ed.), Principles and Practice of
Constraint Programming - CP 2005. XX, 887 pages. 2005.

Vol. 3708: J. Blanc-Talon, W. Philips, D.C. Popescu, P.
Scheunders (Eds.), Advanced Concepts for Intelligent Vi-
sion Systems. XXII, 725 pages. 2005.

Vol. 3707: D.A. Peled, Y.-K. Tsay (Eds.), Automated Tech-
nology for Verification and Analysis. XII, 506 pages. 2005.

Vol. 3706: H. Fuks, S. Lukosch, A.C. Salgado (Eds.),
Groupware: Design, Implementation, and Use. XII, 378
pages. 2005.

Vol. 3705: R. De Nicola, D. Sangiorgi (Eds.), Trustworthy
Global Computing. VIII, 371 pages. 2005.

Vol. 3704: M. De Gregorio, V. Di Maio, M. Frucci, C.
Musio (Eds.), Brain, Vision, and Atrtificial Intelligence.
XV, 556 pages. 2005.

Vol. 3703: F. Fages, S. Soliman (Eds.), Principles and
Practice of Semantic Web Reasoning. VIII, 163 pages.
2005.

¥396.487

Table of Contents

Middleware Integration

Cooperative Component-Based Software Deployment in Wireless Ad
Hoc Networks
Hervé Roussain, Frédéric Guidec

Infrastructure for Automatic Dynamic Deployment of J2EE
Applications in Distributed Environments
Anatoly Akkerman, Alezander Totok, Vijay Karamcheti

Patterns for Deployment

Component Deployment Using a Peer-to-Peer Overlay
Stéphane Frénot, Yvan Royon

A Methodology for Developing and Deploying Distributed Applications
Graham N.C. Kirby, Scott M. Walker, Stuart J. Norcross,
Alan Dearle

QOS Issues

Crosslets: Self-managing Application Deployment in a Cross-Platform
Operating Environment
Stefan Paal, Reiner Kammiiller, Bernd Freisleben

DAnCE: A QoS-Enabled Component Deployment and Configuration
Engine

Gan Deng, Jaiganesh Balasubramanian, William Otte,

Douglas C. Schmidt, Aniruddha Gokhale

Adaptability, Customisation and Format Aware
Deployment

Improving Availability in Large, Distributed Component-Based
Systems Via Redeployment
Marija Mikic-Rakic, Sam Malek, Nenad Medvidovic

X Table of Contents

A Decentralized Redeployment Algorithm for Improving the
Availability of Distributed Systems
Sam Malek, Marija Mikic-Rakic, Nenad Medvidovic

Dependability

Propagative Deployment of Hierarchical Components in a Dynamic
Network
Didier Hoareau, Yves Mahéo 0 iiiiiiininin...

Modelling Deployment Using Feature Descriptions and State Models

for Component-Based Software Product Families
Slinger Jansen, Sjaak Brinkkemper,

Assembly and Packaging
J2EE Packaging, Deployment and Reconfiguration Using a General
Component Model

Takoua Abdellatif, Jakub Kornas, Jean-Bernard Stefani

A Model of Dynamic Binding in .NET
Alex Buckley

Case Studies

Reuse Frequency as Metric for Dependency Resolver Selection
Karl Pauls, Till G. Bay o,

ORYA: A Strategy Oriented Deployment Framework
Pierre-Yves Cunin, Vincent Lestideau, Noélle Merle

Deployment of Infrastructure and Services in the Open Grid Services

Architecture (OGSA)
Paul Brebner, Wolfgang Emmerich

Author Index

Cooperative Component-Based Software Deployment
in Wireless Ad Hoc Networks

Hervé Roussain and Frédéric Guidec

University of South Brittany, France
{Herve.Roussain, Frederic.Guidec}@univ-ubs.fr

Abstract. This paper presents a middleware platform we designed in order to al-
low the deployment of component-based software applications on mobile devices
(such as laptops or personal digital assistants) capable of ad hoc communication.
This platform makes it possible to disseminate components based on peer-to-peer
interactions between neighboring devices, without relying on any kind of infras-
tructure network. It implements a cooperative deployment scheme. Each device
runs a deployment manager, which maintains a local component repository, and
which strives to fill this repository with software components it is missing in
order to satisfy the deployment requests expressed by the user. To achieve this
goal the deployment manager continuously interacts in the background with peer
managers located on neighboring devices, providing its neighbors with copies of
software components it owns locally, while obtaining itself from these neighbors
copies of the components it is looking for.

1 Introduction

The number and variety of lightweight mobile devices capable of wireless communica-
tion is growing significantly. Such devices include laptops, tablet PCs, personal digital
assistants (PDAs), many of which are now shipped with built-in IEEE 802.11 (a.k.a.
Wi-Fi [1]) network interfaces. With such interfaces, the devices can occasionally be
connected to an infrastructure network, using so-called access points that play the role
of gateways. But the 802.11 standard also makes it possible for mobile devices to com-
municate directly in ad hoc mode, that is, without relying on any kind of infrastructure
network. An ad hoc network is thus a network that can appear and evolve spontaneously
as mobile devices themselves appear, move and disappear dynamically in and from the
network [9].

For the users of laptops or PDAs, the prospect of deploying software applications
on these devices as and when needed obviously appears as an attractive one, no matter
if these devices communicate in infrastructure or in ad hoc mode. Yet, solutions for
component-based software deployment have been proposed mostly for infrastructure-
based environments so far, while very little effort has been devoted to software deploy-
ment in purely ad hoc networks.

In this paper we describe a model we devised in order to allow the deployment
of component-based software applications on mobile devices participating in an ad
hoc network. In Section 2 we motivate our approach by showing how infrastructure-
based networks and ad hoc networks constitute radically different environments as far

A. Dearle and S. Eisenbach (Eds.): CD 2005, LNCS 3798, pp. 1-16, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

2 H. Roussain and F. Guidec

as software deployment is concerned, and we show that solutions that prove efficient
in infrastructure environments are hardly applicable in ad hoc environments. In Sec-
tion 3 we present CODEWAN (COmponent DEployment in Wireless Ad hoc Networks),
a middleware platform that implements our model. The main characteristics of this plat-
form are discussed in Section 4, which also lists some directions we plan to work along
in the future. In Section 5 we compare CODEWAN with other works that also address
the problem of software deployment, either in infrastructure environments, or in ad hoc
environments. Section 6 concludes the paper.

2 Motivations

In this section we show that deploying software components in an ad hoc network raises
issues that usually do not appear in infrastructure networks. As a reminder, we first
describe how software component provision and delivery are commonly performed in
an infrastructure-based environment. We then show that an ad hoc network presents
additional constraints that need to be addressed specifically.

2.1 Software Deployment in an Infrastructure Network

Figure 1 illustrates a typical infrastructure network, including stable and mobile hosts—
typically, workstations and laptops—interconnected through gateways (such as routers
and switches). In such an environment some of the stable hosts can be in charge of
storing components in so-called component repositories, and of implementing server
programs capable of delivering these components on demand. Other hosts in the net-
work can then behave as simple clients with respect to these servers. Whenever the
owner—or the administrator—of one of the client hosts initiates the deployment of a
new component-based software application on this device, the problem mostly comes
down to locating the server—or servers—capable of providing the components required
by this application, and downloading these components so they can be installed locally.

Consider the example shown in Figure 1, and assume that the owner of device A
decides to initiate the installation on this device of an application that requires compo-
nents ¢/, c2 and c3. The deployment middleware running on device A must first identify

Host devices E
B g
b |] /’
! E ¢ Available components

d/
| R AR
‘\ T ,T . N
@ Lo —~— “fe2, ¢4, ¢5, c7)

\ e .? \l ‘ L] —o)
. \. @
E / Routers .SI -Q.SZ
{c2, c5, c6}

@ L ;./ Component servers

{cl, c2, ¢4, c5)

Fig. 1. Illustration of software component deployment in an infrastructure network

Cooperative Component-Based Software Deployment in Wireless Ad Hoc Networks 3

one or several servers capable of delivering these components. A component may ac-
tually be provided by several servers, for example in order to balance the workload in
the network, or to allow fault tolerance. In any case, once a client has identified a server
that can provide a component, obtaining this component simply requires its download
between the server and the client. Note that in such a context the deployment of a com-
ponent on a given host can usually be considered as a “real time” operation: once a user
has ordered the deployment middleware to locate and download a component, this oper-
ation can usually be performed immediately. In the remaining of this section, we show
that deploying components in an ad hoc environment can in contrast require a more
lengthy process, which requires some middleware capable of enforcing a deployment
strategy in the background on behalf of the user.

2.2 Software Deployment in a Dynamic Ad Hoc Network

Figure 2 shows a typical dynamic ad hoc network, which consists of a collection of
portable communicating devices. The devices in such a network are usually highly mo-
bile and volatile. Device mobility results from the fact that each device is carried by
a user, and users themselves move quite a lot. Device volatility is the consequence of
the fact that, since the devices usually have a limited power-budget, they are frequently
switched on and off by their owners.

A major characteristic of wireless ad hoc networks is that communication interfaces
have a limited transmission range. Consequently any device can only communicate
directly with neighboring devices. Multi-hop transmissions can sometimes be obtained
by implementing a dynamic routing algorithm on each device [10,13], but it is worth
observing that even with dynamic routing, a realistic ad hoc network often presents
itself as a fragmented network. Such a network appears as a—possibly changing—
collection of so-called “islands” (also referred to as “clouds” or “cells” in the literature).
Mobile devices that belong to the same island can communicate together, using either
multi-hop or single-hop transmissions depending on whether dynamic routing is used or
not in the network. However, devices that belong to distinct islands cannot communicate
together, because no transmission is possible between islands.

Exchange cell
o = o of A, B, C

s ‘ N A
/ N\ Exchange cell of E
7 A \ Suspended
/ i device ;
I ?\ "/// N
\ c | {c3} y N

®- \
\ / 7 ?
\ li / 2 | -
B {cl, c2) / Eﬁ | l
N _.-4 e) £ /
>~ - -'4 D 4, c5) -

\{cl, c3, ¢
\

»

Available
components

/

Moving user (and device) N\ P

Ne
.

Fig. 2. Illustration of software component deployment in a dynamic ad hoc network

4 H. Roussain and F. Guidec

In such a context, a traditional client-server deployment scheme such as that illus-
trated in Section 2.1 is hardly applicable, as no device is stable and accessible enough
to play the role of a server of components, maintaining a component repository and
allowing client devices to access this repository whenever needed.

In the remainder of this paper, we present a model we propose in order to al-
low for these constraints. Basically, instead of being able to access a server whenever
needed, each device must maintain a local component repository. A peer-to-peer in-
teraction model then makes it possible for a device to cooperate with its neighbor-
hood, by allowing its neighbors to obtain copies of the software components avail-
able on its local repository, while itself benefiting from a similar service offered by its
neighbors.

Consider the example shown in Figure 2, and assume again that the owner of de-
- vice A wishes to install on this device an application that requires components ¢/, c2
and ¢3. In our example, A can obtain components ¢/ and ¢2 from device B. But as
devices C and E—that both own a copy of component c3—are (possibly temporar-
ily) unreachable, A cannot obtain a copy of component c¢3 from any of these devices.
Yet A could obtain component ¢3 from device C if this device was switched on by
its user. It could also obtain this component from device E if A’s user happened to
walk towards E, or if E’s user happened to walk toward A. A roaming device such
as D may even serve as a benevolent carrier between E and A, transporting compo-
nent c3—and possibly other components as well—between separate islands, and thus
contributing to the dissemination of software components and applications all over the
network.

This example shows that when the owner of a mobile device participating in an ad
hoc network requests the deployment of a component-based application on this device,
there is no guarantee that this request can be satisfied immediately, as there is no guar-
antee that the components required for this deployment are readily accessible in the
neighborhood. Yet, since the topology of an ad hoc network can change continuously
and unpredictably as devices move and are switched on or off, the fact that a given
component cannot be obtained at a given time does not involve that this component will
remain inaccessible in the future. There is thus a need for some deployment middleware
capable of ensuring the collection of missing components in the background in order to
satisfy the user’s needs.

3 Towards Software Component Deployment on Mobile Devices

In this section, we present an overview of CODEWAN (COmponent DEployment in
Wireless Ad hoc Networks), a platform we designed in order to support the deployment
of component-based software applications on mobile devices communicating in ad hoc
mode. CODEWAN implements a cooperative model, where neighboring devices inter-
act in order to discover and exchange software components. Each device implements a
local component repository, and a deployment manager is responsible for maintaining
this repository on behalf of the user. Any component stored in the repository can be
used to assemble and start an application locally. Copies of this component can also be
sent on demand to neighboring devices.

Cooperative Component-Based Software Deployment in Wireless Ad Hoc Networks 5

3.1 Overview of the CODEWAN Platform

The platform is built as a three-layer model, as shown in Figure 3. The upper and lower
layers in this model have been described in details in [7] and [3] respectively. They
are thus only described briefly below, and the paper then continues with a detailed
description of the model’s central layer, which implements the component repository
and the deployment manager that maintains this repository.

o

/ App1

Fig. 3. Overview of the CODEWAN platform and screenshot of its GUI on a PDA

The upper layer in the platform is meant to provide a framework for assembling
and running applications. Instead of defining its own component-model, CODEWAN
was designed so as to rely on existing execution frameworks for component-oriented or
service-oriented applications. In its current implementation it interfaces with JAMUS,
a runtime framework that is primarily dedicated to hosting potentially malicious mo-
bile applications [7], as well as with JULIA, an execution framework for applications
designed using the Fractal component model [12].

The lower layer in our model was designed in order to support the asynchronous
dissemination of so-called transfer documents in an ad hoc network. A transfer docu-
ment is an XML document whose external element’s attributes specify the conditions
required for disseminating the document in the network. These attributes thus play ap-
proximately the same role as header fields in IP packets or in UDP datagrams. They in-
dicate typically the document’s source and destination, the expected propagation scope
for this document, etc.

The “payload” of a transfer document consists of the internal XML elements that
are embedded in the document. Any kind of structured information can be transported
in a transfer document. In CODEWAN, though, transfer documents are used to transport
software package descriptors in the network.

Figure 4 shows a typical transfer document. Attributes in this document indicate
that it was sent by device shiva, and that it was addressed to any device in the neigh-
borhood (notice that the communication layer CODEWAN relies on supports the use
of wildcard addresses). The payload in this transfer document consists of a package
descriptor, whose role and structure are detailed in Section 3.3.

6 H. Roussain and F. Guidec

<transfer —document
document—id="fb54356fe468d9"
source="device:shiva" destination="device:x"
hops—to—live="3" lifetime="01:00:00"
service—type="package—advertisement ">
<package—descriptor>
<general—information
type="application/java" category="communication/messaging "
name="JMessager" version="1.3"
provider="Laboratoire Valoria"
summary="JMessager is a P2P messager"/>
<java—application name="masc.jmessager. JMessagerimpl" />
<dependencies >
<required—package name="JMessengerUl" version="1.2"/>
<required—package name="P2PAsyncDissemination"/>
<optional—package name="AddressBook" version="2.0"/>
</dependencies >
</package—descriptor>
</transfer—document>

Fig. 4. Example of an XML transfer document carrying a software package descriptor

The communication layer in CODEWAN provides services for encapsulating trans-
fer documents in UDP datagrams. Large XML documents can be fragmented and then
transported in distinct, smaller transfer documents that each can fit in a single UDP
datagram. The communication layer of course supports the re-assembly of such frag-
ments after they have been received from the network. Documents can be transferred
either in unicast, broadcast, or multicast mode, and using either single-hop or multi-
hop transmissions. In the latter case, all mobile devices in the network are expected
to behave as routers, using algorithms for dynamic routing and flooding such as those
described in [13,11,14].

Further details about CODEWAN’s communication layer can be found in [3]. In the
remainder of this paper we focus on the description of the central layer of the platform.
The deployment manager is implemented in this layer, together with the component
repository this manager is in charge of maintaining. The repository is a place where
software components can be stored locally on a mobile device. Components stored in
this repository are thus readily available for the execution framework that constitutes
the upper layer of the platform. The deployment manager takes orders from the user,
and interacts with peer managers that reside on neighboring devices in order to fill the
local repository with components required by the user, while providing its peers with
components they need in order to satisfy their own users.

3.2 Installation Steps in CODEWAN

The deployment manager can provide the user with information about all the applica-
tions it knows about. At any time a given application is either:

— installed locally (meaning that this application is either already running in the local
execution framework, or ready to be loaded and started in this framework);

~ installable (meaning that all the components required for running this application
are available in the local repository, so the application could be installed immedi-
ately if the user requested it);

