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Foreword

Three series of lectures were given at the 32nd Probability Summer School in
Saint-Flour (July 7 24, 2002), by the Professors Pitman. Tsirelson and Werner.
The courses of Professors Tsirelson (“Scaling limit, noise, stability™) and Werner
(*"Random planar curves and Schramm-Loewner evolutions™) have been pub-
lished in a previous issue of Lectures Notes in Mathematics (volume 1840). This
volume contains the course “Combinatorial stochastic processes” of Professor
Pitman. We cordially thank the author for his performance in Saint-Flour and
for these notes.

76 participants have attended this school. 33 of them have given a short
lecture. The lists of participants and of short lectures are enclosed at the end of
the volume.

The Saint-Flour Probability Summer School was founded in 1971. Here are
the references of Springer volumes which have been published prior to this one.
All numbers refer to the Lecture Notes in Mathematics series, except S-50 which
refers to volume 50 of the Lecture Noles in Statistics series.

1971: vol 307  1980: vol 929 1990: vol 1527  1998: vol 1738

1973: vol 390 1981: vol 976 1991: vol 1541  1999: vol 1781

1974: vol 480  1982: vol 1097 1992: vol 1581  2000: vol 1816

1975: vol 539  1983: vol 1117 1993: vol 1608 2001: vol 1837 & 1851
1976: vol 598  1984: vol 1180 1994: vol 1648  2002: vol 1840

1977: vol 678 1985/86/87: vol 1362 & S-50  1995: vol 1690 2003: vol 1869

1978: vol 774 1988: vol 1427 1996: vol 1665

1979: vol 876 1989: vol 1464 1997: vol 1717

Further details can be found on the summer school web site
http://math.univ-bpclermont.fr/stflour/

Université Blaise Pascal Jean Picard
September 2005
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Preliminaries

0.0. Preface

This is a collection of expository articles about various topics at the interface
between enumerative combinatorics and stochastic processes. These articles ex-
pand on a course of lectures given at the Ecole d'Eté de Probabilités de St.
Flour in July 2002. The articles are also called ‘chapters’. Each chapter is fairly
self-contained. so readers with adequate background can start reading any chap-
ter, with occasional consultation of earlier chapters as necessary. Following this
Chapter 0, there are 10 chapters. each divided into sections. Most sections con-
clude with some Frercises. Those for which 1T don’t know solutions are called
Problems.

Acknowledgments Much of the research reviewed here was done jointly with
David Aldous. Much credit is due to him, especially for the big picture of contin-
uum approximations to large combinatorial structures. Thanks also to my other
collaborators in this work, especially Jean Bertoin, Michael Camarri, Steven
Evans. Sasha Gnedin, Ben Hansen. Jacques Neveu, Mihael Perman, Ravi Sheth.
Marce Yor and Jim Young. A preliminary version of these notes was developed
in Spring 2002 with the help of a dedicated class of ten graduate students in
Berkeley: Noam Berger, David Blei, Rahul Jain, Serban Nacu, Gabor Pete.
Lea Popovic, Alan Hammond, Antar Bandyopadhyay, Manjunath Krishnapur
and Grégory Miermont. The last four deserve special thanks for their contri-
butions as research assistants. Thanks to the many people who have read ver-
sions of these notes and made suggestions and corrections. especially David
Aldous, Jean Bertoin, Aubrey Clayton, Shankar Bhamidi, Rui Dong. Steven
Evans. Sasha Gnedin, Bénédicte Haas. Jean-Francois Le Gall, Neil O'Connell.
Mihael Perman, Lea Popovie, Jason Schweinsberg. Special thanks to Mare Yor
and Matthias Winkel for their great help in preparing the final version of these
notes for publication. Thanks also to Jean Picard for his organizational efforts
in making arrangements for the St. Flour Summer School. This work was sup-
ported in part by NSF Grants DMS-0071448 and DMS-0405779.



2 Preliminaries
0.1. Introduction

The main theme of this course is the study of various combinatorial models of
random partitions and random trees, and the asymptotics of these models re-
lated to continuous parameter stochastic processes. A basic feature of models for
random partitions is that the sum of the parts is usually constant. So the sizes
of the parts cannot be independent. But the structure of many natural mod-
els for random partitions can be reduced by suitable conditioning or scaling to
classical probabilistic results involving sums of independent random variables.
Limit models for combinatorially defined random partitions are consequently
related to the two fundamental limit processes of classical probability theory:
Brownian motion and Poisson processes. The theory of Brownian motion and
related stochastic processes has been greatly enriched by the recognition that
some fundamental properties of these processes are best understood in terms of
how various random partitions and random trees are embedded in their paths.
This has led to rapid developments, particularly in the theory of continuum ran-
dom trees, continuous state branching processes, and Markovian superprocesses,
which go far beyond the scope of this course. Following is a list of the main topics
to be treated:

e models for random combinatorial structures, such as trees, forests, permu-
tations, mappings, and partitions;

e probabilistic interpretations of various combinatorial notions e.g. Bell poly-
nomials, Stirling numbers, polynomials of binomial type, Lagrange inver-
sion;

e Kingman’s theory of exchangeable random partitions and random discrete
distributions;

e connections between random combinatorial structures and processes with
independent increments: Poisson-Dirichlet limits;

e random partitions derived from subordinators;

e asymptotics of random trees, graphs and mappings related to excursions
of Brownian motion;

e continuum random trees embedded in Brownian motion;

e Brownian local times and squares of Bessel processes;
various processes of fragmentation and coagulation, including Kingman’s
coalescent, the additive and multiplicative coalescents

Next, an incomplete list and topics of current interest, with inadequate refer-
ences. These topics are close to those just listed, and certainly part of the realm
of combinatorial stochastic processes, but not treated here:

e probability on trees and networks, as presented in [292];

e random integer partitions [159, 104], random Young tableaux, growth of
Young diagrams, connections with representation theory and symmetric
functions [245, 420, 421, 239];

e longest increasing subsequence of a permutation, connections with random
matrices [28];
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e random partitions related to uniformly chosen invertible matrices over a
finite field, as studied by Fulman [160];

e random maps, coalescing saddles, singularity analysis, and Airy phenom-
ena, [81];

e random planar lattices and integrated superbrownian excursion [94].

The reader of these notes is assumed to be familiar with the basic theory
of probability and stochastic processes, at the level of Billingsley [64] or Dur-
rett [122], including continuous time stochastic processes, especially Brownian
motion and Poisson processes. For background on some more specialized top-
ics (local times, Bessel processes, excursions, SDE’s) the reader is referred to
Revuz-Yor [384]. The rest of this Chapter 0 reviews some basic facts from this
probabilistic background for ease of later reference. This material is organized
as follows:

0.2. Brownian motion and related processes This section provides some
minimal description of the background expected of the reader to follow
some of the more advanced sections of the text. This includes the defin-
ition and basic properties of Brownian motion B := (By,t > 0). and of
some important processes derived from B by operations of scaling and
conditioning. These processes include the Brownian bridge, Brownian me-
ander and Brownian excursion. The basic facts of 1to’s excursion theory
for Brownian motion are also recorded.

0.3. Subordinators This section reviews a few basic facts about increasing
Lévy processes in general, and some important facts about gamma and
stable processes in particular.

0.2. Brownian motion and related processes

Let S, := X + -+ X,, where the X; are independent random variables with
mean () and variance 1, and let S, for real t be defined by linear interpolation
between integer values. According to Donsker’s theorem [64, 65, 122, 384]

(Sue/VR0 <t <1) L (BLo<t<1) (0.1)

in the usual sense of convergence in distribution of random elements of [0, 1],
where (B;.t > 0) is a standard Brownian motion meaning that B is a process
with continuous paths and stationary independent Gaussian increments, with

1 . .
B, = VtB, where B, is standard Gaussian.

Brownian bridge Assuming now that the X, are integer valued, some con-
ditioned forms of Donsker’s theorem can be presented as follows. Let o(\/n)
denote any sequence of possible values of S, with o(\/n)/\/n — 0 as n — .
Then [128]

(St V0 <t < 1]S, = o(Vi) & (B.0<t<1) (0.2)
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where B"" is the standard Brownian bridge, that is, the centered Gaussian
process obtained by conditioning (By,0 <t < 1) on By = 0. Some well known
descriptions of the distribution of B"" are [384, Ch. 111, Ex (3.10)]

(B, 0<t<1) £ (B, —tB;,0<t<1) = (1 =t)Byy1—p),0 <t <1) (0.3)

i . .
where = denotes equality of distributions on the path space C[0,1], and the
rightmost process is defined to be 0 for ¢ = 1.

Brownian meander and excursion Let T_ := inf{n : S, < 0}. Then as
n — oo
(Sut/ VR0 <t < 1T >n) S (B,0<t < 1) (0.4)

where B™¢ is the standard Brownian meander [205, 71]. and as n — oc through
possible values of T_

(St /VM0<t<1|T =n) L (B*0<t<1) (0.5)

where B{* is the standard Brownian excursion [225, 102]. Informally.

Bu L (B|B >0forall0<t<1)
d

B = (B|B;>0forall0<t<1, B =0)

where £ denotes equality in distribution. These definitions of conditioned
Brownian motions have been made rigorous in a number of ways: for instance
by the method of Doob A-transforms [255, 394, 155], and as weak limits as € | 0
of the distribution of B given suitable events A., as in [124, 69], for instance

(B|B(0,1) > —¢) % B™ ase | 0 (0.6)
(B | BY(0,1) > —) L B™ ase | 0 (0.7)

where X (s.t) denotes the infimum of a process X over the interval (s.t).

Brownian scaling For a process X := (X;.t € J) parameterized by an in-
terval J, and I = |G, D] a subinterval of .J with length Ay := D; — G > 0.
we denote by X[I] or X[G[. D;] the fragment of X on I, that is the process

X[y = X¢, +u (0<u<Ap). (0.8)

We denote by X, [/] or X,[G.Dj] the standardized fragment of X on I, defined
by the Brownian scaling operation
Xa+ur, — Xa,

VAL

For T > 0 let Gp := sup{s : s < T.B, = 0} be the last zero of B before
time T and Dy := inf{s : s > T. B, = 0} be the first zero of B after time

X[y =

(0<u<l). (0.9)
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T. Let |B| := (| B|,t > 0), called reflecting Brownian motion. 1t is well known
[211, 98, 384] that for each fixed T" > 0, there are the following identities in
distribution derived by Brownian scaling:

B.[0,T] £ Bl0,1]; B.[0,Gq] £ B (0.10)

d

|B|.[Gr. T] £ B™; |B|.[Gr, Dr] £ B (0.11)

It is also known that BP", B™® and B®* can be constructed by various other
operations on the paths of B, and transformed from one to another by further
operations [53].

For 0 < t < ~o let B" be a Brownian bridge of length t, which may be
regarded as a random element of C[0,¢] or of ('[0, o], as convenient:

B"'(s) = VIB" ((s/t) A1) (s>0). . (0.12)

Let B™! denote a Brownian meander of length t, and B®*! be a Brownian
excursion of length t. defined similarly to (0.12) with B™¢ or B™ instead of
Bhr-

Brownian excursions and the three-dimensional Bessel process The
following theorem summarizes some important relations between Brownian ex-
cursions and a particular time-homogeneous diffusion process R3 on [0, ),
commonly known as the three-dimensional Bessel process BES(3), due to the
representation

(Ry(t),t > 0) £ (0.13)

where the B; are three independent standard Brownian motions. It should be
understood however that this particular representation of Rz is a relatively
unimportant coincidence in distribution. What is more important, and can
be understood entirely in terms of the random walk approximations (0.1) and
(0.5) of Brownian motion and Brownian excursion, is that there exists a time-
homogeneous diffusion process R3 on [0,00) with R3(0) = 0, which has the
same self-similarity property as B, meaning invariance under Brownian scal-
ing, and which can be characterized in various ways, including (0.13), but most
importantly as a Doob h-transform of Brownian motion.

Theorem 0.1. For each fired t > 0, the Brownian excursion B! of length t
is the BES(3) bridge from 0 to 0 over time t, meaning that
(B™'(s),0<s<t) L (R3(s),0 < s <t|R3(t)=0).

Moreover, as t — oc

d

B> 5 Ry, (0.14)

and Ry can be characterized in two other ways as follows:
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(1) [303, 436] The process Ry is a Brownian motion on [0,0c) started at O and
conditioned never to return to 0, as defined by the Doob h-transform, for the
harmonic function h(x) = x of Brownian motion on [0,00), with absorbtion at
0. That is, Ry has continuous paths starting at 0, and for each 0 < a < b the
stretch of Ry between when it first hits a and first hits b is distributed bike B
with By = a conditioned to hit b before 0.
(ii) [345)

Ry(t) = B(t) —2B(1) (1 >0) (0.15)

where B is a standard Brownian motion with past minimum process
B(t) := B[0.t] = —R3[t. o).

Lévy’s identity The identity in distribution (0.15) admits numerous varia-
tions and conditioned forms [345. 53, 55| by virtue of Lévy’s identity of joint
distributions of paths [384]

(B—B.-B) = (|B|. L) (0.16)

where L := (L,.t > 0) is the local time process of B at 0, which may be defined
almost surely as the occupation density

!
Ly =lim —
el0 2 J,

(R3(t),t > 0) = (|Bi] + Lyt > 0).

s <e).

For instance,

Lévy-Ito-Williams theory of Brownian excursions Due to (0.16), the
process of excursions of |B| away from 0 is equivalent in distribution to the
process of excursions of B above B. According to the Lévy-1to6 description of
this process, if Iy := [T,_,Ty] for Ty := inf{t : B(t) < —¢}, the points

{(pu(1) (B = B)[I]) : € > 0, (1)) > 0}, (0.17)

where j is Lebesgue measure, are the points of a Poisson point process on
R.o x R.o x C[0,00) with intensity
dt

U ———
V2 t3/2

On the other hand. according to Williams [437]. if M, := B[l,] — B[] is the
maximum height of the excursion of B over 3 on the interval I;. the points

P(B™" € dw). (0.18)

{(6, M. (B —B)[]): € > 0,u(ly) >0}, (0.19)
are the points of a Poisson point process on R, x R x ('[0. 50) with intensity

) ,
At ﬂp(lr-_\im c ({u}) (UZU)
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0.2 Brownian motion and related processes

where B is a Brownian excursion conditioned to have mazimum m. That
is to say B is a process X with X(0) = 0 such that for each m > 0,
and H,(X) := inf{t : t > 0,X(t) = x}, the processes X0, H,,(X)] and
m — X[H,,(X), Hy(X)] are two independent. copies of R3]0, H,,(R3)], and X
is stopped at 0 at time Hy(X). Ité’s law of Brownian excursions is the o-finite
measure v on C'[0,00) which can be presented in two different ways according
to (0.18) and (0.20) as

. > d ,
Pw“Jeq:/ TRB>I" € ) (0.21)
(

) /"’ dt

vi-) = —_— -
Jo V2mi3/2 Jo m?

where the first expression is a disintegration according to the lifetime of the

excursion, and the second according to its maximum. The identity (0.21) has a

number of interesting applications and generalizations [60, 367. 372].

BES(3) bridges Starting from three independent standard Brownian bridges

B:"‘.i =1.2.3. for r.y > 0 let

By ) = \/(J' 4+ (y —x)u+ B )2+ (BY )2 + (BY,)? (0<u<l).
(0.22)
The random element Ry ¥ of C'[0. 1] is the BES(3) bridge from xr to y. in terms
of which the laws of the standard excursion and meander are represented as

BPX i ngai) and T me g R?:"P (()2&5)

where p is a random variable with the Rayleigh density

1

P(p edr)/de=2ac 2 (x> 0) (0.24)
and p is independent of the family of Bessel bridges R, > 0. Then by
construction

By =p L \/or, (0.25)

where 'y is a standard exponential variable, and
(B | B" =) s Ry (0.26)

These descriptions are read from [435, 208]. See also [98, 53, 62, 384] for further
background. By (0.22) and 1to’s formula, the process B3 ¥ can be characterized
for each r.y > 0 as the solution over [0, 1] of the Ito SDE

I (y— Ry

Ry =1 dR, = <7—

B ; 27
7 + 1= s) ) ds + dv, (0.27)

for a Brownian motion .
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FExercises

0.2.1. [384] Show, using stochastic calculus, that the three dimensional Bessel
process Ry is characterized by description (i) of Theorem 0.1.

0.2.2. Check that R; ¥ solves (0.27), and discuss the uniqueness issue.

0.2.3. [344, 270] Formulate and prove a discrete analog for simple symmetric
random walk of the equivalence of the two descriptions of R3 given in Theorem
0.1, along with a discrete analog of the following fact: if R(t) := B(t) — 2B(t)
for a Brownian motion B then

the conditional law of B(t) given (R(s),0 < s < t) is uniform on [—R(t),0].
(0.28)
Deduce the Brownian results by embedding a simple symmetric random walk
in the path of B.

0.2.4. (Williams’ time reversal theorem)[436, 344, 270] Derive the identity
in distribution

(R;;(t),() E t S Kyw) g (1" - B(HI - t)a() S t S HJ')’ (029)

where K, is the last hitting time of x > 0 by R3, and where H, the first hitting
time of r > 0 by B, by first establishing a corresponding identity for paths of
a suitably conditioned random walk with increments of £1, then passing to a
Brownian limit.

0.2.5. [436, 270] Derive the identity in distribution

(R3(1),0 <t < Hy) L (2 — Ry(H, —1),0 < t < H,), (0.30)

where H,. is the hitting time of x > 0 by Rs.

0.2.6. Fix x > 0 and for 0 < y < x let K, be the last time before H,(R3) that
Ry hits y, let I, := [K,_, K,], and let R3[l,] —y be the excursion of Rz over the
interval I,, pulled down so that it starts and ends at 0. Let M, be the maximum
height of this excursion. Show that the points

{(y, My, R3[1,] —y) : M,, > 0}, (0.31)

are the points of a Poisson point process on [0, z] X R-o x C'[0, 00) with intensity
measure of the form

f(y,m)dy dmP(B™*!" e dw)

for some f(y,m) to be computed explicitly, where B I is a Brownian excur-
sion of maximal height m. See [348] for related results.
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Notes and comments

See [387, 270, 39, 384, 188] for different approaches to the basic path trans-
formation (0.15) from B to Ry, its discrete analogs, and various extensions.
In terms of X := —B and M := X = —B, the transformation takes X to
2M — X. For a generalization to exponential functionals, see Matsumoto and
Yor [299]. This is also discussed in [331]. where an alternative proof is given
using reversibility and symmetry arguments, with an application to a certain
directed polymer problem. A multidimensional extension is presented in [332],
where a representation for Brownian motion conditioned never to exit a (type A)
Weyl chamber is obtained using reversibility and symmetry properties of certain
queueing networks. See also [331, 262] and the survey paper [330]. This repre-
sentation theorem is closely connected to random matrices, Young tableaux.
the Robinson-Schensted-Knuth correspondence. and symmetric functions the-
ory [329. 328]. A similar representation theorem has been obtained in [75] in
a more general symmetric spaces context. using quite different methods. These
multidimensional versions of the transformation from X to 2Af — X are inti-
mately connected with combinatorial representation theory and Littelmann’s
path model [286].

0.3. Subordinators

A subordinator (T,. s > 0) is an increasing process with right continuous paths,
stationary independent increments., and Ty = 0. It is well known [40] that every
such process can be represented as

Ty =ct+ Y A, (t >0)

0<s<t

for some ¢ > 0 where A, := T, — T, and {(s.A,) : s > 0,A, > 0} is the set
of points of a Poisson point process on (0.~c)? with intensity measure dsA(dr)
for some measure A on (0,0c). called the Lévy measure of Ty or of (T}, t > 0).
such that the Laplace exponent

V(u) = cu+ / (1 —e "“")A(dx) (0.32)
Jo
is finite for some (hence all) u > 0. The Laplace transform of the distribution
of T} is then given by the following special case of the Lévy-Khintchine formula
[10]: ’

Ele 4T = ¢V, (0.33)

The gamma process Let (I';,s > 0) denote a standard gamma process, that
is the subordinator with marginal densities

P(I'y € dr)/dr = e (r >0). (0.34)

I'(s)
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The Laplace exponent W(wu) of the standard gamma process is

‘”".Z “13
\p(u) = l()g(l + ’l[,) = U — ? + 3

and the Lévy measure is A(dx) = x'e “dr. A special feature of the gamma
process is the multiplicative structure exposed by Exercise 0.3.1 and Exercise
0.3.2 . See also [416].

Stable subordinators Let P, govern a stable subordinator (T,,s > 0) with
index o € (0,1). So under P,

T, L ghle, (0.35)

where

E,[exp(=AT))] = exp(=A") = / e M fo(x)dr T (0.36)
JO

with f,(r) the stable(a) density of T}, that is [377]

] s ey I'(ak+ 1) .
fa(t) = ;;THHI(FHA')A—NT. (0.37)
For a = % this reduces to the formula of Doetsch [112, pp. 401-402] and Lévy
[284] ‘
Fi(t) = ——e T = P(LB; 2 € dt)/dt (0.38)
i 2/m °

where B, is a standard Gaussian variable. For general «v, the Lévy density of T}
is well known to be

v 1
wlr) = ——— r >0 0.39
o) = g @0 (0.39)
Note the useful formula
r+u
E (T %) = —=2=—2 (8> — 0.40
(1y7) NUESD) (0> —a) ( )

which is read from (0.36) using 7, ” = 1(0) " [[Z A" e ATrdX. Let (S;.t > 0)
denote the continuous inverse of (Ts.s > 0). For instance. (Sy,t > 0) may be the
local time process at 0 of some self-similar Markov process. such as a Brownian
motion (a = 5) or a Bessel process of dimension 2 — 2a € (0.2). See [384, 41].
Easily from (0.35). under P,, there is the identity in law

' a d o d g i

Si/t* £ 8 =T, (0.41)
Thus the P, distribution of S| is the Mittag-Leffler distribution with Mellin

transform i )
P . P+
E.(SY) = Es({TT ")P) = =— -1 0.42
SN =BT = [y (0> 1) (0.42)



