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Preface

This booklet is intended for high-school students interested
in mathematics. [t is concerned with approximating real num-
bers by rational ones, which is one of the most captivating
topics in arithmetic.

[iv the last decade, some young mathematicians, and not
only young mathematicians, have shown a negligent attitude
towards “classical” and “pure” mathematics in contrast with
“modern” and “applied” mathematics. This stance is fully
unjustified.

First. mathematics rests on a foundation of numerous clas-
sical theories, facts and findings which must be known to every
mathematician. For instance, the theory of continued fractions,
a part of classical pure mathematics, is widely used nowadays
to calculate numerical values of functions by means of com-
puters.

Second, while science develops, many of its theories become
obsolete and “dry up”. like some branches of a tree. Quite a
few do. yves. but not all of them. There are theories which
survived centuries (or even millenia) and still retained their
significance.

Continued fractions represent one of the most perfect crea-
tions of 17-18th century mathematicians: Huyvgens, Euler,
Lagrange, and Legendre. The properties of these fractions
are really striking.

The following should be borne in mind when reading this
booklet.

Topics easily understandable are presented in normal print,
while those more difficult are given in small print. Proofs of
some theorems given in small print may be omitted safely.
These theorems will necessarily be taken for granted.

However. mathiematics is not just reading for entertain-
ment. A future mathematician as well as a physicist or an
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engineer has to acquire skill in dealing with mathematical
constructions and proofs. So take a pencil and a sheet of pa-
per and study carefully the topics given in small print. You
may succeed in simplifying some proofs or finding better
ones.

The theory of continued fractions is vast. This booklet
covers only its fundamentals, but it contains everything that
may be useful for a layman interested in mathematics. Pro-
fessional mathematicians need to know much more.

Nikolai Beskin



Chapter 1

Two Historical Puzzles

1.1. Archimedes’ Puzzle

1.1.1. Archimedes® Number. Many people believe that only
a distant journey. preferably to outer space or the ocean
bottom, could enable them to meet anything extraordinary,
for the everyday life is so familiar that can show up no un-
usual facets.~

What a delusion it is! Our surroundings are full of puzzles
which go unnoticed because they seem to be habitual.

This chapter tells us a story of two enigmatic, vet familiar,
episodes from the history of mathematics.

High-school students the world over know from the course
in geometry a symbol @ which denotes the ratio of the cir-
cumference of a circle to its diameter.

The letter m is the lirst letter of the Greek word
aegm@epere. which means “circle”. An English mathematician
Jones was the first to introduce the symbol m in 1706. In
1736 Euler adopted this notation instead of the symbol p he
previously used. Since then the symbol t has come into gen-
eral use.

From the most ancient times mathematicians sought a
value for the number . Archimedes determined its approxi-
mate value as 22/7%. This fact is so well known that hardly
anybody suspects that it conceals a mystery. Who ever asks

* Actually Archimedes gave a different formulation to this result
in his book On the Measurements of the Circle. He determined for m
its bounds: 3;—;‘
of any circle equals three times the diameter plus an excess which
is less than one seventh of the diameter but greater than ;—‘1' of it.”

< 1< 3 = . Toquote Archimedes, “The circumference
‘

. 3 10 1
Although the value of 1 is closest to 3_—1 as compared to 3—7 j
i

. 1 . .
the simpler value 3 = is the one in general use.
7



whiy Archimedes chose a fraction with 7 for denominator?
What would happen if 7 were approximated by a fraction
vith denominator 8?

This question proves to be of extreme interest.

1.1.2, Approximation. Mathematicians often encounter a
problem of replacing an object (a number. a function. a fig-
ure. etc.) by some other object of the same nature, which is in
some sense sufficiently near to. but simpler than, the original
oire. This replacing is called the epprorimation. In the general

(a4 Jr
t > t i —C——
0 ! z J 4
Fig. 1

case It requires that a set of objects be singled out and the
sense of the phrase “sufficiently close to” be defined. We shall
not discuss this general problem and restrict ourselves to the
approximation of real numbers.

Let us congider the set of all real numbers. The conven-
tional notation for this set is R. Real numbers may be of com-
plicated nature, e.g. irrational numbers, or be cumbersome.
e.¢. fractions with large denominators.

It is worth explaining why cumbersomeness of a fraction is
evaluated by its denominator. (We remind that a fraction is

) o .
a mimber L where p and ¢ ave integers. and ¢==0: therefore.
q

/3 T
1,4, and = arcnot fractions.) If we are mainly interested not

in the magnitude of a real number o but in its arithmetic
nature, we need to know the position of o hetween two con-
secutive integers 7 and n - 1. The addition of an integer to
the number o will not change the arithmetic nature ol =«
(this statement does not hold for that branch of arithmetic
which deals with integers). Figure | shows two numbers =
and 3 -~ 2 identically located within segments [0, 1] and

[3. 4] (the term “segment” is delined on p. 41). For instance,
Y o
391 = S 3 " : L
the numbers =— == 47 and — are identically located within
4

£ +
the corresponding seements [97. 98] and [0, 1]. and thus there
are no reasons to regard the former as being more complicated
than the latter. This implies that an analysis of the nature of
the numbers within the segment [0, I] would be quite sui-
ficient since the same pattern is reproduced within each seg-
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ment {n, n — 1]. This is why we are concerned only with the
denominator when evaluating the cumbersomeness of a frac-
tion.

Let us single out a subset of fractions with a given denomi-
nator ¢ from the set R of all real numbers. The distance he-
tween anumber o and a fraction —5— is;ff.—%'. Now we can

give an interpretation of the

problem of the approximation .« 1
of real numbers as follows: fo p-1 pt B
approcimate a real number o by R q 7
« fraction with ¢ denominator
olich is the closest to o among
all fractions with ¢ denominator. g

It we mark all fractions with L B _—E
g denominator on the number 7 7 q

line, the number = will fall
within an interval Detween
two fractions or coincide with one of them. The latter case is
trivial, and we can write that

Fig. 2

ko Y <o<< f—{-

Ol these two fractions the one necarest to o is chosen as its
approximation (Fig. 2).
[t could happen that o is the middle point of the segment

[FT/‘ s L1 This and only this case implies that there exist
two solutions of the problem. For the sale of deliniteness. we
choose to adopt the left-end point of the segment as the ap-
proximation of =.

It is clear, therefore. that a fraction with any denominator
can approximate the number «, that is. the choice of ¢ deno-
minator is a matter of preference.

Approximation is emploved when it is necessary to use a
rational number instead of an irrational number. It is also
applicable to replacement of rational numbers by less cumber-

some ones. i.e. by numbers with smaller denominators. For
. . . ; 2936

instance, the approximation of the number =3 by the frac-
i )

tion with denominator 12 is

11



since
5 2036 6
2 ~770%3 <12

where 2936 4 nea to — than t 5
Sieie o § BoATer 1 ;
lere = is nearer to 45 than to 45

The approximation of real numbers by decimal fractions has
Tong been in general use. However, decimals were yet unknown
in Archimedes’ time*, and he could choose fractions with
arbitrary denominators to approximate the number 1. Why
did he prefer fractions with denominator 72 Could it be
purely accidental?

1.1.3. Error of Approximation. A real number « is approxi-

mated by a fraction —5— with an error

A=a—2L
q

N

; _ . . p— 1
where <~ stands for the end point of the segment [pT’ ..

q -
which is the closest to =.
The error is thus the exact ralue of o minus its approximation.

Therefore, the error is positive if%:—;’—, and negative if

P o=t
g —  q

The absolute value | A | of the error is called the absolute
error.

It is clear that the absolute error does not exceed ,,Lq (see
Fig. 2):

|
lAfgz—q-

Fis 1 . 1
T'he number o0 S the wupper bound of absolute error. The

upper bound depends on the choice of approximation. For

* Decimal fractions became known in Europe at the end of the
16th century, although in the Orient they had been used since the
end of the 15th century. They were invented by the Flemish scientist
Simon Stevin. Here is what the English writer Jerome K. Jerome had
to say on the matter: “From Gent we went to Bruges (where I had
the satisfaction of throwing a stone at the statue of Simon Stevin,
who added to the miseries of my school-days by inventing decimals),
and from Bruges we came on here.” (Diary of a Pilgrimage, the entry
for Monday, June 9.)

12



instance, if we agreed to approximate the number o by the

left-end point of the segment Lp—;i—, fTJ . then the upper

bound would be

q
1.1.4. Quality of Approximation. The absolute error approach-
es the upper bound if « is the middle point of the segment
—1 A, e N
[”T, %] . This is the most unfavourable case. If, however.
acisveryclose to one of the end

points, the actual absolute error s F

may be considerably smaller a 9
than the upper bound. ih malite - f
This  observation suggests . g Jraty )
that the evaluation of the — .
quality of approximation is re- 14 & ?
quired. It is clear that the ap- Low guality
proximation of a number o by a
fraction with a small denomi- Fig. 3

nator is appropriate if the error

is small; or, to be more precise, if the absolute error is sub-

stantially less than the upper bound of the error (Fig. 3).
In order to evaluate the qualily of approximation, we have

to estimate the ratio of the actual absolute error to the upper

bound on the absolute error

absolute error ~ lz—p/ql
upper bound on absolute error 1/2q

=2 |g2—pl.
It is convenient to consider one half of this ratio denoted
by % and called the normalized error,
h=|qa—p|. (1)
The normalized error h is thus one half of the ratio of the

actual absolute error to the maximum possible error. 1t is obvi-
ous that

0<h<‘1—,.

The quality of approximation is the higher, the less 2 is.
We call the quantity

4 1 1 ¢

A N Pt (2)

the quality factor. 1t has a simple and lucid meaning: The
quality factor of approximation is the factor by which the actual
absolute error is less than the maximum possible error. 1t is ob-

13



vious that
1 <A << o,

and the greater 2, the better the approximation.

It would be wrong to expect fractions with greater deno-
minators to be more useful. It could happen that the approxi-
mation of the number « by a fraction with the denominator 8
is less accurate than that by a fraction with denominator 7.
Let us have a look at the number 1, approximated by fractions
with denominators from 1 through 10 (see Table 1). We omit
the calculations, leaving them to the reader.

Table 1
o | AR | et | 1 n r
3 1 . ) _
1 T ——==0.5000 0.1416 V1416 3.5
2 — L _0.2300 | o0.1418 | 0.2832 1.8
2 4
, 9 1 ” . i
3 ; — =0.1667 | 0.1416 | 0.4248 1.2
4 i A o250 | o.1088 | 0.4336 1.2
4 8
16 . N . _
5 T —IT)* =0.1000 0.0584% 0.2920 1.7
19 I . . _.
6 - 0l -=0.0833 0.0251 03,1504 3.3
22 1 a R ,
7 - 700714 | 0.0013 | 0.0089 | 365 ()
(4 -
25 1 . )
8 5 16 —0.0625 0.0166 0.1327 3.8
25 1 . . N -
9 = 15 =006 | 0.0305 | 0.2743 1.8
31 1 ,
10 e — = 0.0500 | 0.0416 | 0.4159 1.2
10 20

This table demonstrates that the approximation of mt by
fractions with denominator 7 is more accurate than that by
the other fractions. The actnal error is less than its upper
bound by a factor of 56.5.

Figure 4 shows the location of zt on the number line. Acci-
dentally (but is it indeed accidental?) = happens to be quite
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1 ) ; i .
close to 3—7. If it were prescribed to approximate m with the

absolute error less than or equal to 0.0013, how would we
proceed? We would write down the condition

whence ¢ = 385. ](l]llHO(l(‘\ had achieved the same accuracy
using a mmh \mallm denominator. It is worth mentioning
here that fractions with denominator 385 make it possible to
approximate any real number with an error less than 0.0013,
while fractions with denomina-
tor 7 are more preferable for
approximating the z number.
Archimedes™ choice could not
therefore be accidental. DBut
how did he make that choice? ‘ H
Many centuries later (in 1535) T
a Dutch scientist from Melz, |
Adriaen  Antoniszoon  (also , '

w1
G
<

known as Adriaen Antlonisz) 3 P
found an approximate value 8
35 Fig. 4
113

This result has been published after Antoniszoon’s death,
by his son Adriaen Metius, so that the value 355113 is tra-
ditionally called Metius’ number. Metins’ number has the
same striking property as Archimedes’ number: the actual
error is less than it could be expected for the denominator 115.
We invite the reader to examine Metius’ number in the same
way as Archimedes’ number has been analysed.

There is no doubt that Metius’ number was not an acciden-
tal discovery. In fact, it was known long before Adriaen Anto-
niszoon happened to find it (see, e.g. Struik’s book in the
Bibliography).

1.2, The Puzzle of Pope Gregory XIII

1.2.1. The Mathematical Problem of the Calendar. Pope
Gregory XIII was not a mathematician but his name is asso-
ciated with an important mathematical problem, that of the
calendar.

Nature has supplied us with two obvious time units: the
year and the day (solar day). We even read in one old text-
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book on cosmography: “Unfotunately, the year does not com-
prise an integral number of days.” We could not but agree
with this complaint because the fact does bring a lot of in-
convenience. However, it also generates an interesting mathe-
matical problem.

1 yvear = 365 days 5 hours 48 minutes 46 seconds
= 365.242199 days*.

[t would be impossible to enact and implement this dura-
tion of the year in civil life. But what if the civil year is
declared exactly 365 days long? Figure 5 shows the orbit of
the Earth. On January 1, 1985, at midnight, the Earth was
at point A. On January 1, 1986, at midnight, it will be at
point B, and next January 1 it will be at point C; and so
forth. As a result, if we mark on the orbit the position of the
Earth corresponding to a fixed date. this position will not
be the same cach year but will retard by nearly six hours.

* Neither the astronomical aspects of the calendar (such as vari-
ation in the length of the year) not its history are analysed here in
detail; we concentrate only on one mathematical problem connected
with the calendar. We recommend that the reader interested in these
details look them up elsewhere.
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