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ITERATIONS OF DIFFERENTIAL OPERATORS

FOREWORD

The basic theme of this book is the examination of the con-
neciions between solutions of differential equations and the iter-
ations A/f of the differential operator A, which occurs in an
equation, and which are used in the‘,éiven function f, occurring in
that equation. The first chapter discusses the Kotake-Narasimhan
theorem, which establishes a ’;'connection between the rate of
increase of the norms IlAff I of iterations of the elliptic operator
A and the analyticity of the function u - the‘ solution of the
equation Au=f, Basically, however, this book describes the con-
struction and examination of explicit formulae which express the
solution u of different problems, containing the operator A, in terms
of AIf, j = 0,,.... The construction of these formulae is based on
the systematic use of the"}ilethods of the theory of weighting
approximations of the analytic functions of 6né complex variable
using polynomials. 4

The formulae obta.med are used to construct solutions of
differential equations, and also to examine the propertles of
solutions of degenerating equations. There are also other appli-
cations to the problems of functional analysis and the theory of
functions. |

We shall descrlbe the contents of the book in more detail.

The solutions of dnfferent problems for linear differential
equations can be xfep_resented in the form of functions of a differ-
ential operator occurring in that equation. For example, the solution
of the equation A.u-Cu=f is represented in the form u=(A-CD7If.
The solution of the Cauchy problem o u(t) = -Au(t), u(0) = f can
be written using the formula u(t) = e tAf As is well known, we
can use various methods to make sense of these formulae. For this

we usually use either a spectral expansion of the operator A, or
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a construction of thé function g(A) using the resolvent of the
operator A. In any/,éase, the expression g(A)f has a fully defined
meaning for wide classes of differential operators A, functions g(}\)

and vectors f.
At the same time, the questn&n of how to use g(}\), A and f

to construct u—g(A)f is extremely importunt. This problem is solved
in an elementary way 1f glA)=P(A) is 5 polynomial. In this case, to
obtain g(A)f it is sufficient to know 'how to obtain the iteration
Af. If A is a differential operator with analytic coefficients, and
fis an analytnc function, it is not difficult, in theory, to obtain
Af, Often (if the coefficients of the operator A and the function
f are’ polS'nomlals for example), the corresponding calculations are
qunte /simple. Mo eover, in these cases it is also very difficult to
caleulate the functions g(A)f, for example of the form (A- U )1 F

of e tAf and we d to use finite-dimensional approximations of
\ ]

,a different type to obtain u=g(A)f (for example, finite-difference

approximations or Galerkin approximations of the initial equation).
In this book we discuss another approach to calculatmg g(Af.
It COI’ISlSt\b of g(A)f being represented in the f’orm of a Bmit as
n—>m of the polynomials P_(A)f of the n-th d(‘[,l"@f‘ from the oper-
afor A, apphed to f.{We w;‘e able to obtain smular representations
for wide cla%ses of dlfferentxal operators of tﬁe first and secdnd
order with partial d r|vat|ves with analyflc coefﬁcnents The prob—
lem of constj\::th the polynomlals B ) turned out to be closely
connected with the theory of weighting. appr()xlmal.rqps of‘ functnqns
using polynomxalj on a half-lme and on a: line. T}u§ theory was
established by Bernshtein (see his book [1]), and was then developed
by a number of mathematicians (see the re\uew artlcles by Akhiezer

[1] and Mergelyan [1], and Mandel’ bronts book [lJ)
The th;ory of weighting approximations is developed?.ura new

dlrection in the third chapter of this book. Namely, we basica!ly
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consider explicitly constructing - for a specified analytic function
g(\), a polynomial P_()\), which approximates it with wgight well
on a straight line, and obtaining a_ faifiy exact estimate of the
error as mn>co. v

In the fourth and sixth chapters we use the polynomials con-
structed in the third chapter to construct functions of operators
in Hilbert and Banach spaces. We obtain polynomial representations

of the form

glAf = limP_(Af, (m
n—>co

-

where P_ is a polynomie-xl explicitly constructed according to the
function g. The chapter contains broad classes of partial differential
equations with analytic coefficients, to construct which we use (1).

A classic example of representing g(A)f in the form (1) is
the representation of the solution of Cauchy's hyperbolic problem
%u(t)=-Au(t), ul0)=f, c) Lu(0)=0, whyf{l is given in the Cauchy-
Kowalewska theorem. ln this cas:e/P (A) is a finite segment of the
series expansion g(A)f= cos(tﬂ)f in powers of t for small |¢|.

Using its special interpolation polynomials P_(A\)=P_(¢t,\) in-
stead of the Taylor series .of the function g(\)=g(t,\)=cos(ty¥})
enabled us explicitly to construct the solution u(t) not only for
small ¢, but also for as large t as desired. Formulae of the form
(1) are also obtained for Cauchy's parabolic problem and for station-
ary equations.

§8 of the fourth chapter represents (1) in the form of an iter-
ation scheme suitable for solving equations' of the form Au=f on
a computer without recourse to finite—dimensional approximations.
The chapter presents appropriate examples, and compares them

with difference methods.
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The expliéit representations g(A)f in terms of the iteration A/f
of the operator using (1) enable us not g'nly to construct u=g(A)f,
but also to investigate the properties of the function wu=u(x).

The hfth chapter of the book thus analyses the properties of
the fun(‘tlun u(x)=g{A)Ax) when A is a degeneratmg operator. In
particular, estimates of the x-smoothness, of the functions wu(x)
and ul(x,t) of solutjions of different types of degenerating diffe'r‘-
entialll/(:ﬁuations Aré obtained. These equations have been the sub-
ject of thorougl:v/ndlysm (see, for example, the papers of Bony and
Séhapira [1-31, Moser (1], Cohn and Nnreﬁ‘berg (11, Oleinik (1], and
Oleinik and Radkevich [1]):

Our use of the methods of the theory Af functions enabled
‘?j-_ps to obtain, in a unique way, accurate estm‘lates of the smooth-
hess of different types of differential equations, and to establish
the connection between the smoothness u(x)=g(A)flx) and the anal-
ytic properties g{)). In addition, we m‘anaged to include a number
of cases that were not coveréd by previous papers, and to refine
the known estimates of smoothness,

The second chapter examines the question of the existence of
polybomlal representations of the form (1) of solutions of the ellip-
tlc/equatlons Au=f with coefficients and right-hand sides from the
Ci{rleman classes C(M(k)) of infinitely differentiable functions. It
t{xmed out that this question was closely connected to the quasi-
analyticity of the class C(M(k)). Namely, solutions u of equations
with coefficients and the right-hand side from C(M(k)) are rep-
resented in the form (1) when, and only when, the class C(M(k))
is quasi-analytic.

In the seventh chapter, we discuss questions connected with

expressing the solution of the nonlinear equation Flu)=f in terms '/

of P(f), =0,1,... . This expression is treated in a generalised serise."’:
Namely, it is required to obtain an expression of the value h(u) of?

¢ 5
» .
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the functional h in the solution u of the equation Ru)=f in terms
of the value h(Ff of this functional in iterations of the operator
F, whilst it is required to obtain this‘expression for the complete
system {h:} of functionals.

This problem is solved for a wide class of nonlinear elliptic
second-order differential operators on the torus T™. Its solution
is based on the infinite-dimensional generalisation of Poincaré's
theorem on the normal form of an analytic mapping. Namely, it is
proved that we can construct in ‘W:',( T™) a system of coordinates

Ej, j€ N, such that the effect of the operator F will take the form
F:&,—)kIEj. EIGIR,jGIN 2)

where X\ ; are eigenvalues of the differential F'(0) of the operator
F in zero for the corresponding nonlinear differential operator F,
F0)=0, which acts in Sobolev's real space W:,(T m_ p > m.

A mapping of the form (2) is the simplest form of mapping
in an infinite-dimensional space. Thus, Poincaré's generalised
theorem is, on the one hand, an analog of the theorem on the
spectral expansion of linear self-adjoint differential .operators to
the nonlinear case. On the other, we can consider it a stationary
analog of the theorem on the full integrability of evolution
equations.

Chapters 2-7 basically contain a systematic discussion of the
results obtained in [1-16]. This book demands of the reader a
mastery of the fundamentals of analysis (the functions of a com-
plex variable and the functions of many real variables), and also
of the fundamentals of functional analysis. Those facts necessary
for the discussion which exceed the minimum are formulated and

provided in the references.
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Chapters 3-6 form the core of the discussion, and can be read
independently of the other chapters. If the reader is only interested
in applications to differential equations, s/he can begin reading
from the fourth chapter. The seventh chapter is completely auto-
nomous (with the exception of §9), and the reader interested in
nonlinear equations can begin reading from that chapter.

Each chapter contains formulae, theorems, lemmas and so on,
which are numbered independently. If the need arisesto refer to
a formula or theorem from another chapter, the chapter number
is added first. For example, a reference to Formula (3.5.7) is a ref-
erence to Formula (5.7) in the third chapter, the formula being in
the fifth paragraph of that chapter.

The letter C with the same index can denote different con-
stants in proofs and formulations of different theorems, lemmas
and propositions, and different constants are numbered using
different indices within the proof of one statement.
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CHAPTER 1. ITERATIONS OF ELLIPTIC OPERATORS WITH
ANALYTIC COEFFICIENTS

§1. Estimates of the norms of iterations of differential oper-

ators with analytic coefficients.

Suppose K< R™ is a compactum. We shall use A(K) to denote
a set of functions thét are really aﬂalytlc on K. Namely, f € A(K)
if fis definite and infinitely differentiable in some neighbourhood
QO of the compactum K, whilst the constants C ,and C , exist,
such that VxeQcR™

% f()|SCoClal!  VaeZn 1y
Here and below we will use the notation

A=y ooy O =0F .00, 0r=0/0x;,

|| =0ty + ...+, =gl 0, E=CT...0M ((eR™ aeZ%).

Z,is a set of nonnegative integers, Z, = \NU{O}.
We shall use OF(K) to denote complex 8 - neighbourhood
of the compactum K

0S(K)={zeC™3IxeK:|z—x|<d}, 1.2

|z|=max(|z,},-, | Zm)-

We embhasise the difference lal for « € Z® from Iz| for Ze C™
or ZER™,

Lemma 1.1 If K is a compactum and f€ A(K) then the func-
tion flx) extends from K to the complex neighbourhood OF(K),
if 0< 8 < ¢ 'm™!, C, is the same as in (1.1). The following esti-
mate holds:
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€
sup | f(z)f=2=00 11 ! i3
;sd’l,z‘lf( ),—(l—mcle) 0<8<TQ' .9
Proof. According to (1.1), the function flx) decomposes in
the neighbourhood of each point x into a Taylor series

Sx+9)=Y 1/at % (x)y (1.4)

The series converges to flx+y), since by virtue of (1.1) the residual
term of Taylor's formula approaches 0 for small |y |. Using (1.1)
and (1.4), we obtain that serieg (1.4) majorises using the series

+
C Zu (CIIYI l)m (Cl'yml)ﬂ.
(1.5)

=Co(1—C1'_V1|— _Cll.“nl)_l'

It is obvious that series (1.5) converges, and consequently series
(1.4) also converges for |y < 1/ (mC)). Estimate (1.3) follows from
the estimate for the majorant (1.5). Series (1.4) also determines
filx+y) for complex y € C™ . Therefore formula (1.4) determines
the continuation Alx) to ¢§(k).

Henceforth we shall use A(K, C,, C) to denote the set of
functions from A(K), for which estimate (1.1) holds when xc K
with fixed C ; and C,

Lemma 12 If the function flx), which is defined on the
compactum K CR™ , continues to the function flz), which is
analytic' in the complex neighbourhood O5(K) of the compactum
K, whilst ¢

[f@]=Cof) when ze0Sxy 1.6
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estimate (1.1) holds, where C, = Cy(f), C, = 2/8.
Proof. When x € O; ,,(K) = OF /,(K) NR™ from Cauchy's integ-

ral formula we obtain

Ff(x) 1 SO dEy i

.».‘ a! :(é;;)—';lxlf:ll=r Ixm*;nl'—r(g_x‘)l(cl_xl)w-(gm—xm)-
i |

L

where r=5/2. Estimating the integral on the right-hand side in

absolute value using formula (1.6), we obtain that

[ ()| S Col f)r 12 <|a|tCol £)(2/8)'

whence follows (1.1).
Let us now consider, in the bounded domain QCR™ , the

: t/liff(\e’rentla] operators B of order p of the form

B X iy .7
1Bl<p

-

where ag € A(Q).

Note 1.1. All the results formulated and proved in this chap-
ter hold when ag are matrices of order x Xx, x2>1, and u is a
vector, u=(u,,...,u) in (1.7).

Since the case x>1 does not fundamentally differ from
the case x=1, but is more cumbersome, all the proofs will be
carried out for the scalar case x=1.

The following lemma estimates the increase in the norms
of iterations of the operator B.

Lemma 1.3. Suppose the compactum Ko c), gelN, pe€NN,
NEN, the function f€ C PN(Q) and the derivatives f satisfy
estimate

e (0] < C,ChINIt 2 when  [4|<Np. xek, 416
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Suppose B j =1, ..., J are differential operators of the form
(1.7) of order Pp pj (p and the coefficients ag, of these operators
belong to A(K,, C,, C) where C , and C ;, do not depend on
B and j . Suppose 0<j (i)<J when i =l,.... k, op =p(j M) +..+
p(j (k)). Then when kp +lal < Np, x € K, the following inequality
holds:

l(?"B_,m\t_ B f(x)| = C,C4(CgN)'el+or+q 1.9
where we shall take max(2pC,,C, 1), as the constant C:, G =
2C,C, and C , is the number of terms in formula (1.7).

Proof. We shall carry out induction using k. When k=0,
inequality (1.9) follows from (1.8) if we assume C, > C,. Suppose
(1.9) holds when k<n-1. We shall prove (1.9) when k=n. We will

assume x,_, l(l) Bj(,-,—;)f: It follows from (1.9) that
,aaaﬁx,,—lI§C2C§_‘(CGN)"““"*”"'”" (1.10)

when (n - Dp + |B| + |a|l < pN. We shall now take [B| < p(j(n))
and shall consider the term ag,.,0F from formula (1.7), which
determines B=B, Since |B|< p, inequality (1.10) holds when |x| +
np< pN, whilst |B| + o, , < o, Using the fact that a = 4
belongs to A(K,, C|, C) and to estimate (1.10), by differentiating
the product adP X,,-; We obtain the estimate:

|6%(a 3%, - I)I_Cofu(llll - CLIIC,Cy Y (CgNy™+ 151143

=CoC,C57 H(CeN)or el f (Cy /(c,;zv))'(l ‘l‘l B

Since |a|!/(la| - 1)! < ||/, and |a| < pN, hence we obtain the estimate
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|0 0o )| S CoC2Cy {(CoN) o140 §! (&)’ .1

=0 Cs

Since C, > 2pC,, the sum on the right-hand side of (1.11) does
not exceed 2. Summing estimate (1.11), where a = ag, B = ()
over B, and bearing in mind that the number of terms in (1.7)
equals C ,, from (1.11) we obtain: ;

la’Bm)x' —1(X)| S2C4CoC,C5 1 CYCN) eI +eonte

Since Cg = 2C,C,, hence we obtain inequality (1.9) when k=n, and
the lemma is proved.

Theorem 1.1. Suppose f€ A(K),K is a compactum, the operator
B is determined using formula (1.7) and its coefficients belong
to 4(K). Then R and C exist, such that

Ia‘B"f(x)l§CR“’“"'(pk+|a|!) YkeZ,, xeK 1.12)

where C=C,(f) is the constant C , in estimate (1.1) for f, the

number R depends on the constants C , and C , in estimate (L.1)

where f=a g, on C , - the number of terms in (1.7), on p and
on the constant C , in estimate (1.1) for f.

Proof. According to Lemma 1.1 inequality (1.1) holds. Since

laft € |a)i®! , the following estimate follows from (1.1) when |al < pN

|0 | £ CoCloa |t S CoCltl(pN) =l = CopC,) ! N'®! (1.13)
Hence it follows that inequality (1.8) holds, where C, = C,, q =

0 for any NeN. We shall also use Lemma 1.3 when B;=B. We
will use N = [k + lal/p] + 1, [ 1 is the integer part. Since kp +



