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PREFACE

This book was developed from a series of lectures [by van der Pol] given
at the ‘Technische Hogeschool’ of Delft during 1938 and following years,
and from a second series given during the first half of 1940 at the ‘Philips
Research Laboratories’, Eindhoven.

The second author [Bremmer] made extensive lecture reports on the
latter series; subsequently the material was jointly extended during the
German occupatich of the Netherlands. In this period the original manu-
script, in Dutch, was practically completed, while several problems founded
on it were published from 1940 onin Wiskundige Opgaven of the Netherlands
‘Wiskundig Genootschap’. The English translation of the original manu-
script was edited by Dr C. J. Bouwkamp, of this Laboratory. a

Primarily this book is intended for application of the operational calculus
in its modern form to mathematics, physics and technical problems. We
have therefore given not only the basic principles, ideas and theorems as
clearly as possible (and rather extensively), but also many worked-out
problems from purely mathematical and physical as well as from technical
fields. In order to limit the size of the book, proofs of some of the deeper
theorerhs have been omitted, and for these the reader is referred to the
mathematical literature. '

None the less, it is believed that the purely mathematical treatment is
more advanced than is usual in books devoted primarily to practieal
applications. The Abel and Tauber theorems, for example, are extensively
considered, with many examples taken from pure mathematics as well as -
from technical problems. .

It is therefore hoped that the book may be of value to those pure mathe-
maticians who are interested in a rapid and simple derivation of complicated
and unexpected relations between various mathematical functions, as well
as to the engineer in search, for example, of a very simple treatment of
transient phenomena in electrical networks, such as filters. In both cases
the operational calculus appears to its best advantage.

Turthermore, several applications of the operational calculus to the
theory of numbers are to be found in this book, a field of application which
appears to be of the greatest heuristic value and which at present seems
to be far from exhausted.

We have endeavoured to give the operational calculus a rigorous mathe-
matical basis; ot the other hand, we have tried to give the subject-matter
such a form that it can be applied simply to practical problerus.

III
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This led us to treat the operational calculus ab initio, by means of the
- bilateral or two-sided Laplace integral, contrary to the usual practice
based on the one-sided Laplace integral. This procedure was greatly
stimulated by extensive discussions with Dr Ph. le Corbeiller, now at
Harvard University, Cambridge, Mass.

The foundation of the theory on the two-sided Laplace transform caused
us to introduce at an early stage:

(a) the Heaviside unit function, U(¢), defined by U(f) = 0 for <0,
i fort=0,and 1fort>0,

(b) the Dirac -function, &(t).

Further, the use of the two-sided Laplace transform requires, for each
operational relation, the stipulation of the band of Rep within which this
relation is valid. It is felt, however, that the latter complication is more
than compensated for by the following advantages:

(i) the class of functions suited to an operational treatment becomes
much larger,
(ii) the ‘transformation rules’ are considerably simplified,

(iii) the entire treatment becomes more rigorous than the usual presenta-
tion of the one sided integral in technical books.

The rapid way in which solutions of complicated problems can be found
with operational calculus is often astounding. This is mainly due to the
fact that discontinuous functions A(t) of a real variable ¢, which frequently
oceur in the treatment of electrical and mechanical transients as well as in
the theory of numbers, have an operatidnal ‘image’ f(p) that is analytic
in some band of finite or infinite width of the complex p-plane. Simple
transformations of these smooth, analytic, functions f(p) then correspond
uniquely to operations on the discontinuous functions A(t), and so the
complicated handling of these discontinuous functions can be replaced by
extremely simple transformations of the corresponding analytic functions.

The treatment in this book is not limited to the Laplace transform of
functions of one single variable; an extensive chapter is also devoted to
the multidimensional Laplace transforms. This ‘simultaneous operational
calculus’ enabled us, for example, to treat Green’s functions in potential
and wave problems; this part was mainly developed by the second author.
Thus familiar solutions of the Maxwellian equations are obtained by a few
extremely simple algebraic transformations in the p-field. '

In the Introduction, the reader will find a summary of the subjects
treated in the various chapters.

The authors wish to express their thanks to several friends who read
parts or the whole of the manuscript. In the first place we wish to thank
Dr C.J. Bouwkamp for many remarks, which, we believe, have improved
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the clarity of the exposition, and for the translation of the original manu-
script. Further we wish to thank Prof. N. G. de Brujn, whose remarks
have contributed materially to the rigour of the treatment.

! In conelusion, we would add that we shall be most grateful for remarks
and criticism from readers. We feel that this first treatment of the practical
operational calculus on the basis of the two-sided Lapiace transform, with
so many applications to both pure and applied mathematics, and a very
great part of which we believe to be essentially new, is bound to show
marks of immaturity typical of young scientists as well as of young sciences.

B.v.p.P.
H. B.

PHILIPS RESFARCH LABORATORY
EINDHOVEN

November 1947

PREFACE TO THE SECOND EDITION

The necessity of a second edition, four years after the appearance of the
first one, gave us the opportunity to insert a number of corrections and
improvements, scattered throughout the book. The greater.part of the
corrections are due to suggestions by several correspondents. In ccnnexion
herewith we wish to thank particularly Prof. S. Colombo (Paris); Prof.
A. Erdelyi (Pasadena); Dr J. H. Pearce (London); and Mr H. van der Weg
(Findhoven).
We have also ingerted the following new paragraphs:

Rules for the treatment of correlation functions,

A note on the theory of distributions,

A note on the Wiener-Hopf technique,

as all three, modern, subjects iend themselves well to a concise treatment in
vhe ‘language’ of operational calculus.
Finaily we wish to thank the Cambridge University Press for the care

again shown in the preparation of this second edition.
B.v.o.P.
H.B.
PALAIS WILSON, GENEVA
PHILIPS RESEARCH LABORATORIES, EINDHOVEN
September 1954
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CHAPTER I

GENERAL INTRODUCTION

1. History of the operational calculus

The operational calculus, a modern treatment of which is aimed at in
the present book, can be traced back as far as the work of Oliver Heavi-
side (1850-1925). Though many scientists (Leibniz, Lagrange, Cauchy,
Laplace, Boole, Riemann, and others) preceded Heaviside in introducing
operational methods into analysist, a systematic use of it in physical and
technical problems was stimulated only by Heaviside’s work.

Heaviside] was a ‘self-made man’, deprived of regular study at the
university or the engineering college. Nevertheless, his curious methods,
created by himself as they often were, led him to results in technics and
theoretical physics that are undoubtedly among the most important ever
reached. In this connexion let us remember that Heaviside’s work § already
contains Maxwell’s equations of the electromagnetic field in the modern,
now current, vector notation. Also due to him is the conception of the
‘Heaviside Layer’, which is of the greatest importance in present-day radio
communication. Moreover,independently of Lorentz, Heaviside enunciated
the theory of the electronic motion in a magnetic field; he further intro-
duced into Maxwell’s theory that part of the total current which is due to
convection. His concept of impedance, defined independently of Kennelly,
is much more general than that of the conventional alternating-current
technique. The notion of ‘negative resistance’, now common property in
electrical engineering (e.g. arc lamp, radio valve), is often put forward in
his papers, and for the first time in 1895.

But it may be stated that even to-day Heaviside’s papers, difficult to
read as perhaps they are, still contain a great many views and lLidden
things, of both mathematical and physical interest, which are not yet very
well known and which, therefore, have not met with proper appreciation.
Certainly this is largely due to the strange manner in which Heaviside often
derives and announces his results. Moreover, the fact that Heaviside was
not a university man raised a barrier, a certain antagonism, between him
and his contemporaries. The latter reproached him, rightly, with his great

t Compare, for instance, H. T. Davis, The Theory of Linear Operators, Bloomington, -
Indiana, 1936.

I Forasurvey of the life and work of Heaviside the reader is referred to E. T. Whit-
taker, Bull. Calcutta Math. Soc. xx, 216, 1928-9; Balth. van der Pol, Ned. Tijdschr.
Natuurkunde v, 269, 1938.

§ O. Heaviside, Electrical Papers, vols. I and 11, Macmillan, London (New York),
1892; Electromagnetic Theory, vols. 1, 11 and 11 (1893-1912), reissued 1922 by Benn
Brothers, London.

VPaB I



2 OPERATIONAL CALCULTUS I.1

lack of mathematical rigour. Yet Heaviside did develop an abundance of
mathematical and physical methods and results which afterwards, on
critical elaboration by various scientists, proved to be substantially true
and have been approved as such. Though perhaps reasonable, it is regret-
table that such a barrier existed between Heaviside and his fellow-mathe-
maticians. Equally regrettable, but certainly unreasonable, is the point
of view occasionally taken by modern mathematicians with regard to
Heaviside’s work; in many respects it is far superior to the later contribu-
tions to this part of science, both for the methods as well as for the results
arrived att.

Fortunately, there are other records too. For instance, Whittaker (loc.
cit.) wrote, after discussing the difference in views on mathematics between
Heaviside and the pure mathematician:

‘Looking back on the controversy after thirty years, we should now
place the Operational Calculus with Poincaré’s discovery of automorphic
functions and Ricci’s discovery of the Tensor Calculus as the three most
important mathematical advances of the last quarter of the nineteenth
century. Applications, extensions and justifications of it constitute a
considerable part of the mathematical activity of to-day.’

It is this Operational Calculus to which the present book is devoted.

2. The operational calculus based on the Laplace transform

Heaviside’s ideas concerning the operational calculus may perhaps best
be interpreted as followsf. Imagine a linear electrical network originally
at rest. Let an electromotive force E(t) be applied to it, where E(¢) is an
arbitrary function of the time ¢. The response current, i(¢), is then deter-
mined by

i(t) = Y(D) E(?), (1)

in which D, = d/dt. The function Y(D,) is an operator function applied to
the operand E(t), to give the current (). If E(t) is constant with time, ¢(¢)
will be constant too; under these circumstances Y (D) degenerates into the
reciprocal of an ohmic resistance.

The question arises at once of how we are to interpret the operator
function when, for instance, it is of the following form:

1

Y(.D‘) = 1—+—17t.

+ Heavisid¢ was more than ‘ein englischer Elektroingenieur’, in spite of his (and
his successor’s) methods being ‘mathematisch sehr unzulinglich’ and ‘allerdings
mathematisch unzureichend’. Quotations from G. Doetsch, Theorie und Anwendung
der Laplace- Transformation, Berlin, 1937, and New York, 1943, pp. 337, 421.

1 Proc. Roy. Soc. L1, 504, 1892-3; r1v, 105, 1893.
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Should we take it in the sense of

1

D 1-D+D}—D}+..., (2)
or rather in the sense of
1 1 1 1
. S . LI
1+D, D, DEtD¢ (3)

In the first case it is reasonable to interpret D} as d*/dt™. Similarly, when
¢

applying (3) we would take 1/D, to meanf dr; and in so doing a second
a

question has presented itself: What value of the constant of integration,
a, is required? Guided by practical experience, Heaviside came to the
conclusion that, if possible, the form (3) should be chosen rather than (2).
He further concluded that in discussing switch-on phenomena in electrical
networks (when the electromotive force does not come into action before
¢t = 0; that is, E(f) = 0 when ¢ < 0), the lower limit of integration, a, has to
be equated to zero. However, in Heaviside’s work, we have not been able to
find any rigorous statements concerning this question in general.

A modern treatment of the operational calculus requireés, therefore,
a much more rigorous base. This is furnished by the Laplace transform, as
was already pointed out by Heaviside himself{, though he did not use it
extensively. The same Laplace transform was the starting-point of later
writers such as Carsont, Bush§, Humbert||, DoetschY], Wagnertt, Drostel{,
McLachlan§§, and Widder|j. When A(t) is supposed to be given, theun the
Laplace transform of A(t) is the function f(p), defined by the following
integral: ©
fo) = [ erhya. | @

By so doing we let the function f of the variable p correspond to the function
b of the variable ¢. Conversely, as particularly discussed by Carson, the
formula (4) may be considered as an integral equation for the unknown
function A(t), when f(p) is supposed to be given. :

t Electromagnetic Theory, 111, 236.

t John R. Carson, Electric Circuit Theory and the Operational Caloulus, New
York, 1926.

§ V. Bush, Operational Circuit Analysis, New York, 1929.

{| P. Humbert, Le calcul symbolique, Paris, 1934.

9 G. Doetsch, Theorie und Anwendung der Laplace-Transformation, Berlm, 1937,
and New York, 1943.

1+ K. W. Wagner, Operatoren Rechnung, Leipzig, 1940.

1t H.W.Droste, Die Lisung angewandter Differentialgleichungen mittels Laplacescher
Transformation, Berlin, 1939.

§§ N. W. McLachlan, Complex Variable and Operational Calculus, wmmudge,
1939.

Il D. V. Widder, The Laplace T'ransform, Princeton, 1941.
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A somewhat different point of view is taken by Bromwicht, who started

from the complex integral
LN RARaees (V) P

WO =g | et (5)
this integral, it may be noted in passing, was known to Riemann} as
early as 1859. A complete survey of Bromwich’s work is to be found in
Jeffreys’ book §. Wagner|| also based his contribution upon the integral (&)
Further impact to the calculus is owed to LévyY, who pointed out that the
solution of (4), considered as an integral equation for A(t), is given by (5),
and vice versa. Thus by Lévy’s work the two different points of view came
together in one consistent theory.

Also based on the Laplace transform (4), with zero as lower limit of
integration, are the former investigations of Van der Polft and of Van der
Pol and Niessen}].

Henceforth the transformation (4) will be called the unilateral or one-
sided Laplace transform. Contrary to the earlier investigations, this book
will be based on the two-sided Laplace transform

fw)=p [ ewna ®)

to obtain a wider basge for the operational calculus, as will be discussed in
detail in the next chapter. The two-sided Laplace integral has its lower limit
of integration equal to —oo instead of 0. This generalization proves very
advantageous, and includes the earlier calculus as a special case. In the
first place, the operational rules are considerably simplified by the generali-
zation and, secondly, a much larger class of functions (and phenomena)
becomes accessible. .

It is worth while to remark that, whether we use (4), (5) or (6) as the
basis of the operational calculus, the indefinite concepts of operator and
operand wholly disappear. Instead of the vague formulation of the early
operational calculus there comes the functional transform (6), by which
there corresponds to any given function A(f) a new function f(p) of the
complex variable p. In the Volterra sense, f(p) is a ‘fonction de ligne’ or
‘fonctionnelle’, indicating that the form of the function f(p) depends on the

+ T.J.I’a. Bromwich, Proc. Lond. Math. Soc. xv, 401, 1916.

1 The integral occurs in Riemann’s classical paper of only eight pages: *Ueber die
Anzahl der Primzahlen unter einer gegebenen Grosse’, Monatsber. Berl. Akad.
Nov. 1859; see also Gesammelte Werke, Leipzig, 1876, p. 136.

§ H. Jeffreys, Operational Methods in Mathematical Physics, Cambridge, 1927.

| K. W. Wagner, Arch. Elektrotech. v, 159, 1916.

9 P. Lévy, Le calcul symbolique d’Heaviside, Paris, 1926.

+f Balth. van der Pol, Phil. Mag. vix, 1153, 1929; v, 861, 1929; xxv1, 921, 1938;
Physica,’s-Qrav., v, 585, 1937.
it Balth. van der Pol and K. F. Niessen, Phil. Mag. X1, 368, 1931; x1m1, 537, 1932.
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whole set of values which %(f) assumes on the complete real axis of ¢,
— 0 <t <00.

It is to be emphasized that (6) is essentially a linear functional transform,
since in the integrand of (6) the function A(f) occurs linearly. As a con-
sequence, the operational calculus is applicable only to linear problems
such as switch-on phenomena in linear networks, problems of small vibra-
tions, heat diffusion, potential theory, and electrical cables.

As far as the general outlines of the theory are concerned, this book is
restricted to giving an extensive survey; the more complicated theorems
underlying the theory are usually stated without proof. For proofs the
reader is always referred to existing literature, cited in the text. Our
main aim is to demonstrate the vigour of the operational calculus in its
applications, by giving many examples. The discussion will not be confined
to applications in physics and technics; many problems of pure mathe-
matics will be included too.

If the reader has made himself familiar with the fundamental principles
of the calculus presented here, he will certainly become aware of the strength
of this mathematical tool of almost unrestricted heuristic-analytic value;
he will be guided by many examples illustrating the general theory; he will
often be able to construct new analytic relations by quite simple means.

3. Survey of the subject-matter

The starting-point of chapter 11 is the Fourier integral, on which the
foundation of the operational calculus is built. We are then led back to the
fundamental expressions (5) and (6). In chapter mi some elementary
‘operational relations’ are derived which prove useful in the course of the
subsequent investigations. In chapter Iv we shall establish elementary
‘operationsl rules’, indicating how certain changes of the p-function
correspond to others of the ¢-function. Chapter v is devoted to a detailed
discussion of the unit function, U(t), and the delta or impulse function,
8(t). The latter was introduced by Dirac in quantum mechanics; but
Heaviside had already used it extensively before him. The impulse function
is particularly important in relation to the Green function of differential
equations. It is formulated in terms of the general concept of the Stieltjes
integral. Chapter vI should be considered as a deepening and extension of
chapter 11. It contains a detailed investigation of questions of convergence,
particularly in connexion with the summing of series and integrals by the
well-known methods of Abel and Cesaro. In chapter vii, especially the
asymptotic expressions for ‘image’ and ‘original’ are outlined, as well as
related topics. Further, chapter vimx concerns the operational treatment of
differential equations having constant coefficients. This matter is extended
to a system of equations in chapter 1x. These two chapters also include
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the theory qf linear electrical networks, together with the corresponding
transient phenomena. Differential equations with variable coefficients are
treated in chapter x. Applications are made to Legendre polynomials,
Bessel functions, ete. The matter of chapter X1 must be considered as a
generalization of that given in chapter 1v; general rules of more com-
plicated character are discussed. Chapter xm is devoted to the study of
step functions, with applications, amongst others, to number-theoretic
functions. In chapters xmx and X1v we consider the operational calculus
applied to difference equations and integral equations respectively.
Chapters xv and xvI concern applications of the theory to problems in
several independent variables, particularly with respect to linear partial
differential equations. Chapter xvi is thereby based on the simultaneous
transposition of more than one variable, which leads to the simultaneous
operational calculus. :

It is clear from the survey given above that the subject-matter in any
chapter is determined by some specific part of mathematios to which the
operational calculus is successfully applicable in one way or another. It
may thus happen that closely interrelated ‘operational rules’, on the one
hand, and ‘operational relations’ concerning some definite type of function,
on the other, are discussed at several places scattered through the book.
This may hamper further applications, and the material presented must
therefore be made more readily available. We have done this by listing the
most important results in an appendix at the end of the book. We have thus
an opportunity to supply the reader with some additional results which have
not been given explicitly in the course of the work. The first list contains the
‘operational rules’; it forms the ‘grammar’ of the operational calculus.
The second list is the ‘dictionary’, helpful in translating the language of ¢
into that of p and vice versa. The ‘operational relations’ are ordered so
that those which concern related functions are grouped together.

The division indicated is such that some chapters and sections may be
omitted by those who are interested in the applications of the operational
caleulus to technical problems only. Similarly, other chapters may be
omitted by the pure mathematician.

The practical man will find in the following chapters and sections an
almost complete course for his purpose:

m, §§5,6,7; m, §§1,2,3,5,6; 1v, except §7; v, except §§4,5,7; vi, §3;
viL, except §§5,12; via; 1X; X, §§ 1, 2, 4; X1, except §5; x11, §§1, 2, 3; XTIV,
§§1,2,3,5; XV; XVI

On the other hand, the mathematician will find a survey of the subjects
of interest to him by reading only the following chapters and sections:

I, 101 IV; V3 VI, VIL; VIOL, §§ 1, 2, 3, 4; X ; XI; XIT; XII; XIV; XV, except §4; XVI.

Both may well find it helpful to read the complete text, since the parts
otherwise omitted will serve to throw light on the recommended selection.



