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Preface

The development of new energy resources constitutes a very active and challeng-
ing area of modern-day research. Confronted with dwindling supplies of fossil
reserves, scientists face the task of conceiving alternative ways of energy conver-
sion. New energy carriers need to be generated for use in future economic
systems. This requires a vast research effort covering such diverse fields as
solid-state physics, chemistry, and biology. Such an interdisciplinary venture has
to be undertaken now when there appears to be still plentiful coal and petrol, in
order to acquire the fundamental scientific knowledge on which mankind can
rely and build once the conventional resources are exhausted.

While research in the area of new erergy-conversion devices has been carried
out for a relatively short time only, there has been an eéxplosion of information on
this subject. To cover all the significant discoveries in this field would be beyond
the scope of a single book. Therefore, we decided to concentrate on topics of
general importance where rapid progress has been achieved over the past few
years and where a comprehensive documentation of the state of the art is necded.
Thus, catalysis intervenes in most chemical transformations where energy is
converted or needs to be saved. Catalysis of redox reactions and their application
to the photocleavage of water. reduction of carbon dioxide. and fixation of
nitrogen therefore constitute the central themes of the present book.

In photochemical or photoelectrochemical conversion systems, these catalytic
events are linked to light-energy-harvesting and charge-separation processes.
Including a discussion of some fundamental aspects of these phenomena
appeared to us as being useful, in particular since many concepts that helped in
the design of these devices and the understanding of their operation were de-
veloped only recently. This concerns, for example, light-induced redox reac-
tions, reaction dynamics in organized assemblies such as micelles. colloidal

xiii




xiv Preface

metals, or semiconductors, and strategies for molecular engineering of artificial
photosynthetic devices. Furthermore, the principles of electrochemical conver-
sion of light energy via semiconductor electrodes or semiconducting particles are
treated.

To deal with all these points in an encyclopedic manner would be a tantalizing
experience for a single author. Fortunately, outstanding scientists from all over
the world agreed to participate in this effort and address the important issues in
individual contributions. Their expertise, acquired through extensive and excel-
lent research in the particular areas of the field covered by the book, is thus made
available to a wide readership. I am most grateful to these authors for their
enthusiastic participation in the work which has made this venture successful.
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2 V. Balzani and F. Scandola

I. Introduction

In principic, conversion of solar energy into chemical energy can be ob-
tained by means of any thermodynamically uphill reaction produced by
visible-light excitation (/-4). In practice, however, the conversion and
storage of solar energy into a real energy resource requires the transfor-
mation of an abundant and low-cost raw material into 4 fuel (i.e., into a
highly energetic chemical species that can be stored and transported).
Simple economical, ecological, and energeti¢ considerations show that
water, carbon dioxide, and nitrogen are the most attractive raw materials
that can be used as feedstocks of solar reactors, and that hydrogen, meth-
ane, methanol, and ammonia are among the most valuable fuels that one
would like to obtain (5, 6). Thus it is not surprising that most of the
current activity in the field of solar photochemistry is devoted to the four
processes shown in Table 1. Such processes, as well as the natural photo-
synthetic processes (7) are based on electron-transfer reactions. The elu-
cidation of the factors that govern electron-transfer reactions (8-16) is
fundamental for any progress in the field of photochemical conversion of
solar energy.

A photochemical conversion system based on a redox process must
involve a light-induced electron-transfer reaction. As we shall better see
in Section VI,C, when a molecule absorbs a photon of suitable energy an
electronically excited state is obtained that is a better oxidant and reduc-
tant than the ground state. An electron-transfer reaction between such an
excited state and a suitable reaction partner may convert a fraction of the

TABLE |

Some Fuel-Forming Reactions Starting from Abundant and
Low-Cost Materials?

AG (kJ mol~"y ne E(V)

H,00) —2 Hi(g) + 104g) 237 2 n
COfe) + 2H,00) —2> CH.OH®) + 10,(g) 703 6 121
COxg) + 2H:0() —> CHu(g) + 204g) 818 8 106
Ni®) + 3H:00) % INH\(g) + 10:2) 678 6 117

“ From Bolton and Hall (6).

b Frec-cnergy change

© Number of electruns wansferred.

< Fotential energy siored per electron transferred.
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D+A

\ DY+A”

hv AE=hV

AG

D+A

Fig. 1. Schematic energy diagram showing the conversion of light energy into chemical
energy. D, Donor; A, acceptor.

absorbed light into chemical energy (Fig. 1). Usually, the raw material
that we would like to convert into fuel (Table I) cannot be electronically
excited by solar radiation. A typical example is that of water, the elec-
troni rption spectrum of which does not overlap the emission spec-
trum of the sun. In such a case the piocess must be mediated by a suitable
chemical species called a phogosensitizer (P) (17) (Fig. 2). Electron-trans-
fer reactions converting raw materials into fuels are usually very slow
because they involve the transfer of more than one electron (Table I). It
follows that the f\:ic_it_%d/s_ggt_g:d of the photosensitizer would usually un-
dergo-deactivation before reacting with the raw material. Therefore, a
relay (RY species is usually needed that must first undergo a fast electron-
transfer reaction with the excited state of the photosensitizer and then
induce a thermali electron-transfer process that transforms the raw mate-
rial into fuel {18, 19). The latter process is again slow because of its
Tﬂltielectron nature, whereas the competing back electron-transfer reac-

___PHR4H0
1 light-induced reaction
3
H 2 PR+ 4,0 catalyzed thermal
—_— reaction
hY{ ) deactivation 1 1
a 5 P+R+ H2+ 502
back reacticn
AG
P+R+H,0 ¥ 7 }

Fig. 2. Schematic energy diagram showiig the photochemical conversion of a raw material
(exemptified by H,0) intu fuel mediated by a photosensitizer (P} and a relay (R).




4 V. Balzeni and F. Scandola

tion is very fast (Fig. 2). Thus a homogeneous or heterogeneous catalyst
(C) is usually needed to speed up the thermal reaction leading to fuel
(8, 19).

In conclusion, any artificial system for photochemical conversion and
storage of solar energy consists of a light-induced electron-transfer reac-
tion, which is followed by a sequence of thermal electron-transfer reac-
tions that may involve homogeneous and/or heterogeneous catalysts. The
efficiency of the system@%ﬁmﬂmﬂmme various
electron-transfer steps. In this chapter, the state of the art of the theories
of electron-transfer reactions will be presented, and the role played by the
various factors in governing the reaction rates will be discussed. We shall
deal explicitly with homogéneous reactions, but many concepts that will
be illustrated can also be applied to heterogeneous processes, such as
those involving electrodes or hieterogeneous catalysts.

1. Kinetic Formulation

A bimolecular electron-transfer tedction oﬁginatingfrot'n a weak interac-
~ tion' between a donor and an acceptor [Eq. (1)] can be discussed in terms
of elementary steps as shown in the scheme

D+ASSprt A 1)
kg ke kg
D+A==D-A =2 D*A- — D* + A~ )
~d -¢

where the electronic states of D and A are left unspecified; k4, k4, and
k'_4 are diffusion or dissociation rate constants; and k. and k... the (uni-
molecular) rate constants for the forward and back electron transfer in the
encounter. In the inorganic literature D---A and D*---A™ are often called
precursor and successor complex, respectively (12, 20). Note that the
D*-:-A~ successor complex in some systems can disappear via additional
channels not shown in Eq. (2); in such cases the following kinetic treat-
ment retains its validity, provided that k'_4 is substituted by the sum of
the rate constants of the various channels. One such channel may be the
rapid dissociation of D* and/or A~ into fragments. For excited-state elec-
tron-transfer reactions an important way for the disappearance of

! Classical cases of weak-interaction electron-transfer processes are outer-sphere elec-
tron-transfer reactions of transition-metal complexes (/0). The probiem of thc magnitude of
the interaction in electron-transfer processes will be discussed in later sections.




