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PREFACE

This book aims to present, in a unified way, some basic aspects of the mathematical
theory of well-posedness in scalar optimization.

The first fundamental concept in this area is inspired by the classical idea of J.
Hadamard, which goes back to the beginning of this century. It requires existence and
uniqueness of the optimal solution together with continuous dependence on the problem’s
data.

In the early sixties A. Tykhonov introduced another concept of well-posedness impos-
ing convergence of every minimizing sequence to the unique minimum point. Its relevance
to (and motivation from) the approximate (numerical) solution of optimization problems
is clear.

In the book we study both the Tykhonov and the Hadamard concepts of well-posedness,
the links between them and also some extensions (e.g. relaxing the uniqueness).

Both the pure and the applied sides of our topic are presented. The first four chapters
are devoted to abstract optimization problems. Applications to optimal control, ca'culus
of variations and mathematical programming are the subject matter of the remaining five
chapters.

Chapter I contains the basic facts about Tykhonov well-posedness and its generaliza-
tions. The main metric, topological and differential characterizations are discussed. The
Tykhonov regularization method is outlined.

Chapter II is the key chapter (as we see from its introduction) because it is devoted
to a basic issue: the relationships between Tykhonov and Hadamard well-posedness. We
emphasize the fundamental links between the two concepts in the framework of best
approximation problems, convex functions and variational inequalities.

Chapter III approaches the generic nature of well-posedness (or sometimes ill-posedness)
within various topological settings. Parametric optimization problems which are well-
posed for a dense, or generic, set of parameters are considered. The relationship with
differentiability (sensitivity analysis) is pointed out.

Chapter IV establishes the links between Hadamard well-posedness and variational
or epi-convergences. In this way several characterizations of Hadamard well-posedness in
optimization are obtained. For convex problems the well-posedness is characterized via
the Euler-Lagrange equation. An application to nonsmooth problems is presented, and
the role of the convergence in the sense of Mosco is exploited, especially for quadratic
problems.

Chapter V is the first one devoted to applications of the theory developed in the
first four chapters. Characterizations of well-posedness in optimal control problems for
ordinary (or partial) differential equations are discussed. We deal with various forms of
well-posedness, including Lipschitz properties of the optimal state and control.



Vil

Chapter VI discusses the equivalence between the relaxability of optimal control prob-
lems and the continuity of the optimal value (with an abstract generalization). The link
with the convergence of discrete-time approximations is presented.

Chapter VII focuses on the study of singular perturbation phenomena in optimal
control from the point of view of Hadamard well-posedness. Continuity properties of
various mappings appearing in singularly perturbed problems (e.g. the reachable set
depending on a small parameter in the derivative) are studied.

Chapter VIIIis devoted to characterizations of Tykhonov and Hadamard well-posedness
for Lagrange problems with constraints in the calculus of variations, after treating integral
functionals without derivatives. We also discuss the classical Ritz method, least squares,
and the Lavrentiev phenomenon.

Chapter IX considers first the basic (Berge-type) well-posedness results in a topologi-
cal setting, for abstract mathematical programming problems depending on a parameter.
Then we characterize the stability of the feasible set defined by inequalities, via con-
straint qualification conditions; Lipschitz properties of solutions to generalized equations
are also discussed. Hadamard well-posedness in convex mathematical programming is
studied. Quantitative estimates for the optimal solutions are obtained using local Haus-
dorff distances. Results about Lipschitz continuity of solutions in nonlinear and linear
programming end the chapter.

We have made an attempt to unify, simplify and relate many scattered results in the
literature. Some new results and new proofs are included. We do not intend to deal with
the theory in the most general setting; our goal is to present the main problems, ideas
and results in as natural a way as possible.

Each chapter begins with an introduction devoted to examples and motivations or to
a simple model problem in order to illustrate the specific topic. The formal statements
are often introduced by heuristics, particular cases and examples, while the complete
proofs are usually collected at the end of each section and given in full detail, even when
elementary. Each chapter contains notes and bibliographical remarks.

The prerequisites for reading this book do not extend in general beyond standard real
and functional analysis, general topology and basic optimization theory. Some topics
occasionally require more special knowledge that is always either referenced or explicitly
recalled when needed.

Some sections of this book are based in part on former lecture notes (by T. Zolezzi)
under the title “Perturbations and approximations of minimum problems”.

We benefited from the help of many colleagues. We would like to thank especially
G. Dal Maso, I. Ekeland, P. Kenderov, D. Klatte, R. Lucchetti, F. Patrone, J. Revalski,
K. Tammer, V. Veliov. The support of the Bulgarian Academy of Sciences, Consiglio
Nazionale delle Ricerche, MPI and MURST is gratefully acknowledged.

We wish to thank A. Patev for drawing the figures, and C. Taverna for typing the
manuscript.

June 1992 Asen L. Dontchev
Tullio Zolezzi
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Chapter I.

TYKHONOV WELL-POSEDNESS

Section 1. Definition and Examples.

Let X be a set endowed with either a topology or a convergence structure. Let
I:X — (—o00,+00]
be a proper extended real - valued function. Consider the problem
to minimize I(z) subject to z € X,

which we denote by (X, I).

We are interested in the well-posedness of (X, I).

A natural well - posedness concept arises when we require the following two conditions.
First, we impose existence and uniqueness of the global minimum point

zo = arg min (X, [).

Second, we require that, whenever we are able to compute approximately the optimal
value

I(zo) = inf I(X),

then we automatically do approximate the optimal solution zo. That is, every method
constructing minimizing sequences for (X, I) corresponds to approximately computing
Xg.
More precisely, the latter condition means that, if z,, is any sequence from X such
that
I(zp) — inf I(X)

then
z, — argmin (X, I).

This condition is clearly of fundamental relevance to the approximate (numerical) solving
of (X, I). We shall consider first the case when X is a convergence space, as follows.

Let X be a convergence space, with convergence of sequences denotes by — | see e.g.
Kuratowski [ 1, p. 83 - 84]. Let I : X — (—o00,+00] be a proper extended real-valued
function. The problem (X, I) is Tykhonov well-posed iff I has a unique global minimum
point on X towards which every minimizing sequence converges.

An equivalent definition is the following: there exists exactly one zg € X such that
I(zg) < I(z) for all z € X, and



I(z,) — I(zo) implies z,, — xq.

Notice that the existence of some z¢ as above implies its uniqueness (if o, yo do then
take the minimizing sequence z, Yo, Zo, Yo, ---)-

Tykhonov well - posedness of (X, I) is often stated equivalently as strong uniqueness
of arg min (X, I), or strong solvability of (X, I). Sometimes well - posedness is translated
literally as correctness. Problems which are not well - posed will be called ll - posed.
Sometimes they are referred to as improperly posed.

1 Example. Let X = R™ and I(z) = |z| (taking any norm).

Then 0= arg min (X, I) and clearly (X, I) is Tykhonov well - posed.

2 Example. Let X = R and
I(z)=zifz>0, =|c+1|if £ <O0.
Then the only minimum point is zg = —1 but (X, I) is Tykhonov ill - posed since the

minimizing sequence z, = 1/n does not converge to zg.

Remark. Let A be an open set in R", let zo € A and f € C?(A). Suppose that
v f(zo) = 0 and the Hessian matrix of f at z is positive definite. Then z( is a local
minimizer of f. By Taylor’s formula, there exist some a > 0 and a ball B C A centered

at zo such that
f(z) > f(zo0) + alz ~ z0]*, 2 € B,

so that (B, f) is well - posed.
3 Example. Let X be the unit ballin L*°(0, 1) equipped with the strong convergence.
Given u € X let z(u) be the only absolutely continuous solution to
z =u a.e. in (0,1),z(0) =0,
and let

1
I(u) :/ z(u)? dt.
0
Then arg min (X, I) reduces to the single function u = 0 and the optimal value is 0.
This (optimal control) problem is not Tykhonov well - posed since
un(t) = sin nt

1s a minimizing sequence because
t
z(up) (t) = / un dt — 0 uniformly on [0, 1],
0
therefore I(x,) — 0. But u, does not converge to 0 in X since ||u,|| = 1 for any n > 2.

4 Example. Everything is as in example 3, except that X is now equipped with L! —
convergence . Then X is a compact metric space (by Alaoglu’s theorem and separability of
L'(0,1): see Dunford-Schwartz [1, V.4.2 and V.5.1]). Let u,, be any minimizing sequence.
Fix any subsequence of u,, then a further subsequence v, — uo € X and I(v,) — 0.
Then z(v,) — z(uo) uniformly in [0, 1]. So I(up) = 0, hence ug = 0. This shows that the
original sequence u, converges towards 0 in X, thus (X, I) is Tykhonov well - posed.
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5 Example. Let X be the unit ball of L2(0, 1) equipped with the strong convergence,
and let z(u) be as in example 3. Put

1 1
I(u) :/ z(u)? dt +6/ u? dt, €>0.
0 0
If ¢ > 0 then (X, I) is Tykhonov well - posed, but it is not when ¢ = 0.

6 Example. Let X be a sequentially compact convergence space, let I be a proper and
sequentially lower semicontinuous function on X. Suppose that (X, I) has a unique global
minimum point. Then (X, I) is Tykhonov well - posed. So, assuming uniqueness of the
minimizer, well - posedness obtains with respect to the natural convergence associated to
the direct method (compactness and lower semicontinuity) of the calculus of variations.
Another case: X = R", I : R* — (—00, +00) is strictly convex, and I(z) — +o0 as z —
00. Then I is continuous and (X, I) is Tykhonov well - posed. More generally, (X, I) is
Tykhonov well - posed with respect to the strong convergence whenever X is a compact
convex subset of some Banach space and I is finite-valued, strictly convex and strongly
lower semicontinuous on X.

7 Example. The problem (R¥,I) is Tykhonov well - posed if I is convex, lower
semicontinuous and there exists an unique zo = arg min (R¥, ). To see this, replace I
by & — I(zo + ) — I(x0). Then we can assume without loss of generality that

I0)=0< I(z) ifz #0.
Let z, be any minimizing sequence. If |z,| — 400 for some subsequence, then by

convexity

0<I(=2) <

I(z,) — 0 as n — +o0.

EX|

On the other hand, for a further subsequence

In .y with |y = L.
|zn|
By lower semicontinuity we get I(y) = 0, a contradiction. So any cluster point u of

z,, fulfills (for some subsequence) I(z,) — I(u) = 0, yielding u = 0 by uniqueness. Then
z, — 0 for the original sequence.

8 Example. Let X be a convergence space and I : X — (—00, 4+00) be lower semi-
continuous and coercive, i.e. ¥, € X and sup I(y,) < +0oo imply that some subsequence
of y, converges. Then (X, I) is Tykhonov well - posed if it has a unique global minimum
point. If I is lower semicontinuous and bounded from below, then (X, I) is Tykhonov
well - posed iff every minimizing sequence converges.



9 Remark. If X is a Banach space, I is convex on X and (X, ) is Tykhonov well
- posed with respect to the strong convergence on X, then I(x) — +oo as ||z|| — +oo.
Indeed, let zg = arg min (X, ) and arguing by contradiction, assume

L =lim inf I(z) < 400 as ||z]| — 400.

By well - posedness, I(zo) < L. For some sequence z, with ||z,|] — 400 we have
I(z,) — L.
Put 2y, = z, + zo. Then ||ys|| — +o0. By convexity, for some ¢ > 0

S(L—e)+ (L +25)

I(un) < 31(x0) + 21(z) < 5

thus lim sup I(yn) < L, a contradiction.
We shall see that the conditions
I(z) — 400 as ||z|| — +oo and arg min (X, I) is a singleton,

do not imply Tykhonov well - posedness in the infinite-dimensional setting (modify I in
example 18 by imposing I(z) — +00 as ||z|| — +oo : for example

o0 2
<z,€n > P
I(z) =) ——— + (llell = D* if [le]l > 1).
n=1

10 Example. Let X be a nonempty closed convex subset of the real Hilbert space
H. Let u € H be fixed and let
I(z) = ||lu—2z|,z € X.

By (the proof of) the Riesz projection theorem we see that (X, I) is Tykhonov well -
posed with respect to the strong convergence. In fact, let z, be any minimizing sequence.
By the parallelogram law, for every n and &

2
Tn — T " 1 2 2
gl = 5w = z&ll” + [Ju = 2a]]%).

Since (zn + z£)/2 € X, we get

2
(| — M” > m?

where m = dist (u, X). Therefore

T, — Tk 1
=517 < Sl = 2al® + [l — 24 ]|?) = m?,
hence ||z, — zx|| — 0 as n, k — +00. Therefore there exists some z € X such that
z, — z and ||[u — z,|| — |Ju— 2|| = m.

Uniform convexity of H implies uniqueness of z, whence well - posedness.

Example 10 will be generalized, in a very significant way, in section II.1.

As a final example, let X be a real normed space and A C X. By the very definition
(see Giles [1 p.195]), a point & € A is strongly ezposed iff there exists u € X* such that
(A, u) is Tykhonov well-posed with respect to strong convergence and £ = arg min (4, u).
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Section 2. Metric Characterizations.

The weaker the convergence on X is, the easier Tykhonov well-posedness obtains. As
a matter of fact, as we saw in example 6, under uniqueness of the minimizer Tykhonov
well-posedness of (X, ) is a fairly common property, since it can be obtained by the
direct method in the calculus of variations. However, in the applications we often need
sufficiently strong convergence of minimizing sequences. Therefore the following setting
is of interest.
Standing assumptions: X is a metric space with metric d, and

I:X — (—00,400).

Remark. We can assume [ real-valued without loss of generality, since (X,I) is
Tykhonov well-posed iff (K, I) is, where

K = effective domain of [ = {z € X : I(z) < +o0}.

We shall consider X as a convergence space equipped by the (natural) convergence struc-
ture induced by the metric.
In the sequel we shall use the following conditions:

(1) I is sequentially lower semicontinuous and bounded from below.

(2) X is complete.

The basic idea behind the next fundamental theorem can be roughly explained as follows.
If (X, I) is Tykhonov well - posed then € — arg min (X, I) shrinks to the unique optimal
solution as ¢ — 0. Conversely, if diam [¢ — arg min (X, I)] — 0 then every minimizing
sequence is Cauchy, therefore it will converge to the unique solution of (X, I), provided
that (1) and (2) hold.

11 Theorem If (X, I) is Tykhonov well-posed then
(3) diam [e — arg min (X,I)] - 0 as e — 0.
Conversely, (3) implies Tykhonov well-posedness under (1) and (2).
Since Tykhonov well - posedness of (X, ) amounts to the existence of some zo €
arg min (X, I) such that
I(zn) — I(x0) = d(zn,z0) — 0,

then it is reasonable to try to find some estimate from below for I(z) — I(zo) in terms
of d(z, zg). This aims to quantitative results about Tykhonov well-posedness (e.g. rates
of convergence of minimizing sequences).
A function
¢: D —[0,400)

is called a forcing function iff



