an mtroductionto
- computer programming
and data structures ;
usmgMACRO-11

~ harry r. lewis

AnN Introductior to-
Computer Programming
and

Data Structures
Using MACRO-11

Harry R. Lewis

Aiken Computation Laboratory
Harvard University
Cambridge, Massachusetts

(2]

Reston Publishing Company, Inc.
A Prentice-Hall Company
Reston, Virginia

Library of Congress Cataloging in Publication Data

Lewis, Harry R
An introduction to computer programming and data structures using
MACRO-11.

1. MACRO 11 (Computer program language)
2. Electronic digital computers—Programming.
3. Data structures (Computer science) 1. Title.
QA76.73.M23L48 001.6424 80-25450
ISBN 0-8359-3143-9

© 1981 by

Reston Publishing Company, Inc.
A Prentice-Hall Company
Reston, Virginia

All rights reserved. No part of this book may
be reproduced in any way or by any means
without permission in writing from the pub-
lisher.

10 9 8 7 6 5 4 3 2 1

Printed in the United States of America

For my father

Acknowledgments

This book grew out of my experience teaching Applied Mathe-
matics 110 at Harvard, and many people who have influenced that
course have had an impact on the form and content of the book. In par-
ticular, some of the programming projects are lineal descendants of as-
signments designed by my forebears, some of whom I cannot identify.
Certainly Tom Cheatham and Ben Wegbreit, who taught the course
before I did, leave the largest imprint on the approach and choice of
material I have adopted. I have received invaluable help both from my
own course staff and from the staffs of earlier years. Some of those who
deserve mention are Bob Case, Larry Denenberg, Bob Greenberg, Jeff
Herrman, Michael Kahl, Henry Leitner, Geoff Peck, Eric Roberts,*
Walter Scott, and Tucker Taft. To them I express my gratitude and my
apologies for the lack of more specific attributions; and to the others,
not mentioned here by name, I apologize for my ignorance of their con-
tributions. And to the students in Applied Mathematics 110 in 1979 and
1980 I extend my thanks and admiration for their endurance of this ma-
terial during its development.

* Who coined the phrase “MACRO-11 as a higher-level language.”

Preface

This book is intended for an introductory computer science
course at the undergraduate level. It assumes a minimal acquaintance
with computer programming in some form; no specific material is pre-
requisite, but students will find it helpful to have a general understand-
ing of the nature of programming. The main subjects covered are basic
programming concepts, the use of standard types of data structures,
and the elements of software such as assemblers and compilers. The
programming language used throughout is the MACRO-11 assembly
language for the Digital Equipment Corporation PDP-11 family of
computers.*

There are several novelties in our approach and presentation.
Treatments of introductory computer science that use assembly lan-
guage as the medium of expression usually begin with an exhaustive
discussion of machine structure and architecture, moving only much
later to the construction of nontrivial programs. That sequence of ma-
terial has two main disadvantages. First, it is difficult to coordinate a
series of programming exercises with the introduction of architectural
ideas, since fairly simple programming concepts, such as subroutines,
may require the detailed explanation of rather complex aspects of in-
struction decoding and execution; consequently, the teacher may spend
many weeks detailing dry material on machine behavior while the stu-
dent can be assigned only paper-and-pencil exercises to increase famil-
iarity with the machine. The second disadvantage is that the design
motivation for many architectural features can be understood only by
someone who already has a grasp of computer programming. There
arises a chicken-and-egg problem vis-a-vis the teaching of machine de-
sign and the teaching of programming.

Our approach is to explain the machine and the ways it can be

* PDP is a trademark of the Digital Equipment Corporation.

xi

Xii

/ Preface

programmed simultaneously, both a bit at a time. We do this by treat-
ing assembly language as though it were a higher-level language, and
only coincidentally as the symbolic representation of any machine lan-
guage. We introduce the assembly language by example, rather intui-
tively at first, and then in greater specificity. In fact, we discuss ma-
chine architecture only to the extent necessary to produce working
programs. It is assumed that the student has access to the manufac-
turer’s processor handbook in order to answer detailed questions about
the operation of individual instructions, although a summary is given in
Appendix 1. Similarly, we do not present the complete details of the
MACRO-11 assembly language; we omit features, such as conditional
assembly, unlikely to be of use to the novice programmer.

We assume that the student has access to a time-shared PDP-11
with facilities for loading and running programs and supporting buf-
fered input and output. At Harvard we are using the UNIX* operating
system, and the influence of that particular system is visible in parts of
our presentation. But the bulk of the book does not depend on the de-
tails of the supporting software. We assume that a few macros are
available to aid in programming terminal input-output operations, and
in Appendix 4 we supply definitions of those macros for our UNIX en-
vironment; alternative definitions of the same macros could be given
for other operating sytems.

We include a large number of short exercises and a carefully cho-
sen set of six longer programming projects to illustrate the ideas of the
main text. The short exercises immediately follow the sections of the
text to which they are relevant; the projects are grouped in Part 3.
Project 1 can be completed after Part 1 of the text has been read,;
Project 2, after Part 2A; Project 3, after Part 2B; Project 4, after Part
2C; Project 5, after Part 2D; and Project 6, after Part 2E.

Since the book is intended as an introduction to computer science
and not just to computer programming, our choice of programming
projects is oriented towards the explanation of basic computer soft-
ware, such as text editors, assemblers, and compilers, rather than ap-
plication programs from (for example) finance or the data processing
industry. In this way we can achieve two goals at once: instruction in
the skill of computer programming and instruction in the theory of
software. It has been our experience that students who are introduced
to computer science in this way can readily transfer their expertise to
other computers and languages and are well prepared either for em-
ployment as programmers or for more advanced courses on program-
ming and algorithms.

* UNIX is a trademark of Bell Telephone Laboratories.

Part 1

Contents

Preface, xi
MACRO-11 Programming

1.1 Introduction, 1

1.2 Boxes, 2

1.3 Initializing Memory Locations, 2

1.4 Contents, 4

1.5 Addresses, 4

1.6 The Symmetry and Initial Value Principles, 6
1.7 Branches, 8

1.8 Pointers and Deferred Addressing, 10

1.9 Using a Pointer in a Loop, 13

1.10 The Minimum Modification Principle, 16
1.11 The Control Flow Principle, 18

1.12 The Extreme Value Principle, 20

1.13 The Un-Cuteness Principle, 21

1.14 Immediate Mode, 22

1.15 More Instructions, 23

1.16 Registers, 24

1.17 Index Mode, 25

1.18 Autoincrement Mode, 26

1.19 Autodecrement Mode, 29

1.20 Illegal “Modes”, 30

1.21 Binary Numbers, 31

1.22 Negative Numbers, 33

1.23 The Sign Bit, 35

1.24 Multiplying and Dividing by Powers of 2, 36
1.25 Thirty-Two Bit Numbers, 38

1.26 Octal Numbers, 38

1.27 The Condition Codes, 40

vi / Contents

1.28 Other Uses of the Condition Code, 42
1.29 Comparing Addresses, 43

1.30 Multiply and Divide, 45

1.31 Logical Instructions, 47

1.32 A Longer Program: Prime Number Table, 49
1.33 Un-Cuteness Again, 51

1.34 Subroutines: Calling and Returning, 52
1.35 Macros, 54

1.36 Parameters and Transparency, 54

1.37 An Example of the Use of Subroutines: Goldbach’s Conjecture, 55
1.38 Local Symbols, 58

1.39 Stacks, 59

1.40 The Program Counter 61

1.41 The JMP and SOB Instructions, 64
1.42 Bytes, 66

1.43 ASCII, 69

1.44 Terminal Input and Output, 73

1.45 Program Organization, 77

1.46 An Example: Counting Letters, 79

1.47 Linking Several Program Modules, 86
1.48 The Standard I/0 Routines, 86

Part 2 Data Structures and Their Applications

2A Linear Data Structures, 89

2.1 Tables, 89

2.2 Tables of Records, 90

2.3 Arrays, 93

2.4 Buffers and Queues, 98

2.5 Pointers as Table Entries, 100
2.6 Flexible-Sized Records, 103

2.7 Deferred Addressing Modes, 105

2B Linked Lists, 108

2.8 Singly Linked Lists, 108
2.9 Doubly Linked Lists, 113
2.10 A Recursive Program, 116
2.11 Mergesort, 123

2C Trees and Hash Tables, 127

2.12 Trees, 127

2.13 Searching a Tree, 130

2.14 Traversing a Tree, 133

2.15 Other Representations of Trees, 137
2.16 Hash Tables, 139

Contents / vii

2D Parsing and Compiling, 142

2.17 Introduction, 142

2.18 Recursive Syntax Specification, 143

2.19 A Recursive Descent Parser and Evaluator, 148
2.20 Generating Code, 155

2E Lists and List Structure, 159

2.21 Lists, 159

2.22 Internal Representation of Lists, 160

2.23 S-Expressions, 162

2.24 Subroutines to Manipulate List Structure, 164
2.25 Shared List Structure, 168

Part 3 Programming Projects

Project 1: Pocket Calculator, 173

Project 2: A Simple Text Editor, 179

Project 3: Linked Lists, 186

Project 4: A Simple Assembler, 190

Project 5: Compiler for Assignment Statements, 198
Project 6: Reader and Printer for S-Expressions, 200

Appendix 1: The PDP-11 Instruction Set and Addressing Modes, 204

A.1 The Instruction Cycle, 204

A.2 Types of Instructions, 205

A.3 Addressing Modes, 206

A.4 Instruction Formats, 208

A.5 Descriptions of Selected PDP-11 Instructions, 211

Appendix 2: The Standard Terminal I/O Routines, 217
Appendix 3: Macros, 223

Appendix 4: A Macro Library, 228

Appendix 5: Numbers and ASCII Codes, 233

Index, 237

Fart 1

MACRO-1 Programming

1.1. INTRODUCTION

Our aim is to teach you to program in a particular programming
language called MACRO-11. As it happens, the MACRO-11 program-
ming language was designed with a particular computer in mind, the
Digital Equipment Corporation PDP-11. However, you can begin to
learn MACRO-11 without at first knowing anything about the PDP-11;
we shall introduce various aspects of the machine as they become nec-
essary to understand more complicated constructs of the language. And
there are some characteristics of the machine and the language we
shall not bring up at all.

There is a program called the MACRO-11 assembler that trans-
lates programs written in the MACRO-11 language into the native lan-
guage of the PDP-11 computer. The MACRO-11 program being trans-
lated into PDP-11 machine language is called the source program; the
result of the translation is called the object program. The MACRO-11
assembler is itself a program that runs on the PDP-11, so that when the
PDP-11 has been used to translate the source program, the resulting
object program can be run on the same machine.

We shall assume that you have written a few programs in some
higher-level language such as BASIC, PPL, FORTRAN, Pascal, or a
version of Algol; you will be expected to know, for example, what a loop
is. If this assumption is not true for you, you can take what follows as a
general introduction to programming, and you will be able to under-
stand most of what we have to say. But in that case you should be pre-
pared to spend a little extra time studying our examples and getting
help from more experienced programmers.

In any event, our style is informal and our presentation is meant
to be tutorial rather than exhaustive. For further details, you may wish

1

2 / Part1: MACRO-11 Programming

to consult the PDP-11 Processor Handbook and the MACRO-11 As-
sembler Programmer’s Manual (Digital Equipment Corporation,
Maynard, Massachusetts).

1.2. BOXES

Let us begin at the beginning. This is a MACRO-11 program:

MOV A,SUM
ADD B,SUM
HALT

It consists of three instructions: a MOV instruction, an ADD instruc-
tion, and a HALT instruction. To understand what these instructions
do, you must have the following picture in mind: A, B, and SUM are the
names of boxes where items of information can be stored. Boxes such
as A, B, and SUM are called memory locations. The items of informa-
tion stored in boxes are in this case numbers—positive and negative in-
tegers and zero, to be precise. The program can then be read:

Move whatever is in box A into box SUM.
Add whatever is in box B into box SUM.
Halt the computer.

The three instructions are to be executed sequentially, so the net
effect is to add the numbers in A and B together and to put the result in
SUM.

A and SUM are called the operands of the instruction

MOV A,SUM

A is called the first or source operand, and SUM is called the second or
destination operand. Similarly, in the instruction

ADD B,SUM

B is the source operand and SUM is the destination operand.

Note two things: first, the MOV and ADD instructions work from
left to right (move A into SUM, add B into SUM); second, the HALT in-
struction ends the execution of the program. In practice we shall not
want actually to stop the machine at the end of a program; indeed, be-
cause our PDP-11 is assumed to be time-shared, we shall not be able to
do so. But for now it is simplest to pretend that we shall.

1.3 INITIALIZING MEMORY LOCATIONS

How can we put numbers in the boxes A and B to begin with? A
quantity of information that is the right size to fit in one box is called a

Initializing Memory Locations / 3

word. In MACRO-11 we label a box with a particular name, for exam-
ple A, by writing

A:
and we say that the number to go into that box is (for example) 5 by
writing

A: .WORD 5

This is not a PDP-11 instruction; it is simply a statement to the
MACRO-11 assembler that a box named A should be set up with the
number 5 in it. Such a statement is called a directive; directives are rec-
ognizable by the fact that they always begin with a period. Of course,
we also want to set aside a box for B, say

B: .WORD -3

We also need a box for SUM, but in this case there is no need to specify
what should be in the box; the purpose of the program is, after all, to
put something (the sum of whatever is in A and whatever is in B) into
the box named SUM. So we write

SUM: .WORD

which simply holds a box named SUM without specifying what goes in
it.

Actually, .WORD by itself means the sme as .WORD O; but if it
were important that SUM start off containing O, then we should write
.WORD 0 explicitly instead.

Thus our whole program now looks like:

MOV A,SUM
ADD B,SUM
HALT

A: .WORD 5

B: .WORD -3

SUM: .WORD

A label may, by the way, consist of any combination of one to six
letters and digits of which the first must be a letter. The same rule ap-
plies to other kinds of symbols in MACRO-11. The exceptions to the
rules are certain special-purpose symbols, which may contain periods
(.) and dollar signs ($) as well, but these are symbols made up by sys-
tems programmers. The ones you create should not contain periods
and dollar signs.

4 / Part1: MACRO-11 Programming
1.4. CONTENTS

After the program has been run, or executed as we say, the SUM
box will contain the sum of 5 and —3, or 2. That is, the contents of SUM
will be 2. In general, we say “the contents of . . .” instead of “whatever
is in....” We also have a shorthand notation for the same thing: we
write (A) for the contents of A and (SUM) for the contents of SUM.
Since the contents of a box may change as a program is run, the value
of (SUM) may differ depending on the point in the execution of the
program at which (SUM) is mentioned. Thus (SUM) starts off being O;
after the first instruction is executed, (SUM) is 5; and after the second
instruction is executed, (SUM) is 2.

Using Algol-like notation, we describe the effect of the instruction

MOV A,SUM
by
(SUM) « (A)
and the effect of the instruction
ADD B,SUM
by
(SUM) <« (SUM)+(B)
Here the « means “becomes” or “is changed to”; so
(SUM) <« (SUM)+(B)
is read “the contents of SUM becomes the (previous)contents of SUM
plus the contents of B.”
1.5 ADDRESSES

Actually, the PDP-11 computer (as opposed to the MACRO-11
assembler) does not know anything about symbolic names such as A
and SUM. Instead, the memory locations have addresses, which are
numbers (nonnegative integers). The address of a memory location is a
different thing from the number that the memory location contains,
just as the street address of a house is different from the person who
lives in it. The address of a memory location always stays the same, but
the program may store different things in that memory location at dif-
ferent times. Until further notice, all addresses will be even numbers.

Writing

A:
sets up a correspondence between the symbol A and a particular ad-

Addresses / 5

dress, say 50. In general we neither know nor care to what address a
particular symbol refers; all addresses are created equal, and in
MACRO-11 we are freed from having to make arbitrary choices in this
respect. What is useful to know, however, is that if we specify a se-
quence of things to be put into boxes, MACRO-11 will put them at se-
quential addresses. Sequential addresses here are addresses that differ
by two, since for the time being all addresses are assumed to be even.
Thus if we write

TAB: .WORD 3
.WORD -1
.WORD 4
.WORD -5

the MACRO-11 assembler will pick an address corresponding to the
symbol TAB, say 30, and then put 3 in the memory location with ad-
dress 30, —1 in that with address 32, 4 in that with address 34, and —5
in that with address 36. Another way of saying it, which avoids men-
tioning the exact address of TAB, is that (TAB) will be 3, (TAB+2) will
be —1, (TAB+4) will be 4, and (TAB+6) will be —5. Now TAB itself is
not 3—that is the contents of the memory location TAB. The number
that is meant by TAB itself is the address corresponding to this symbol,
30 in our example. That is why we can write TAB+2 to mean 32. To
say it again,

TAB is 30

TAB+2 is 32

(TAB) is(30)is 3

(TAB+2) is (32) is —1

and, if there were any reason to talk about it, (TAB)+2 would be
(30)+2, that is, 5.

A sequence of memory locations like TAB, TAB+2, TAB+4, and
TAB+6 that contain similar information (in this case, four numbers) is
called a table. The individual items of information (the four numbers)
are called entries in the table. Tables are our first (and for a while, our
only) example of information-organizing devices called, as a class, data
structures.

By the way, the same effect could be accomplished by writing

TAB: .WORD 3, -1, 4, -5

instead of
TAB: .WORD 3
.WORD -1
.WORD 4

.WORD -5

6 / Part1: MACRO-11 Programming

Exercises

1.5.1 What does this instruction do?

MOV

TAB+6,SUM

Explain it in English and write it using the Algol-like notation.
1.5.2 Suppose that the following is part of MACRO-11 program.

.WORD 4
.WORD 1
XYZ: .WORD 6
.WORD 2
.WORD 3

What location is changed by the instruction
ADD XYZ+2,XYZ-2

and what are the new contents?

1.6. THE SYMMETRY AND INITIAL VALUE PRINCIPLES

The following program computes the sum of 3, —1, 4, and —5, al-

beit in a fairly illogical way:

MOV
ADD
ADD
ADD
HALT

TAB: .WORD
.WORD
.WORD
.WORD
SUM: .WORD

TAB+4,SUM
TAB+2,SUM
TAB+6,SUM
TAB,SUM

There is no good reason to have the four numbers added in this
order—it might not confuse the computer, but it would surely confuse
any person attempting to understand the program. So this version is

better:

MOV
ADD
ADD
ADD
HALT

TAB,SUM

TAB+2,SUM
TAB+4,SUM
TAB+6,SUM

The Symmetry and Initial Value Principles / 7

TAB: .WORD 3
.WORD -1
.WORD 4
.WORD -5
SUM: .WORD

Still, it is a little ugly to have the first item treated differently from the
rest—being handled by a MOV instead of an ADD like the others. In
general, programs should do the same thing in the same way and
should avoid irregularities that serve no useful purpose. In other words:

Symmetry Principle. Prograims should be symmetric and
uniform when performing similar functions, unless there is
good reason to the contrary.

One may be tempted to enforce the Symmetry Principle simply
by changing the MOV to an ADD; we did mention, after all, that . WORD
by itself means the same as .WORD 0, so the modified program will add
all four numbers to zero and get the right answer. Or if we did not care
to remember that .WORD is #fe:sanme 8. WORD 0, we could in addition
change the last line to

SUM: .wdrg_p 0

Unfortunately, each\ofith¥38 versious. while technically correct,
violates another principle:

Initial Value Principle. A memory location of which the
contents is changed by a program should not be assumed to
have any particular value at the beginning.

That is, since SUM is changed by this program, we should not set it up
so that the program runs correctly only if SUM contains the value O in-
itially.

One reason for the Initial Value Principle is that programs are
often run more than once, and the program may run correctly only the
first time if the principle is violated. In our example, SUM contains 1
after the program is run the first time; if the suggested change (chang-
ing MOV to ADD in the first instruction) were made, then the second
time the program were run, it would incorrectly leave SUM containing
2:

How can the Symmetry and Initial Value Principles be main-
tained in this case? By arranging the program so that it begins by put-
ting zero in SUM, before adding the four numbers to SUM. Of course,
this involves setting aside a box that we can be sure will always contain
zero, but we know how to do that. Thus the following program does the
trick:

