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Preface

This work provides a first taste of the theory of Lie groups accessible to ad-
vanced mathematics undergraduates and beginning graduate students, provid-
ing an appetiser for a more substantial further course. Although the formal
prerequisites are kept as low level as possible, the subject matter is sophisti-
cated and contains many of the key themes of the fully developed theory. We
concentrate on matrir groups, i.e., closed subgroups of real and complex gen-
eral linear groups. One of the results proved is that every matrix group is in
fact a Lie group, the proof following that in the expository paper of Howe [12].
Indeed, the latter, together with the book of Curtis [7], influenced our choice of
goals for the present book and the course which it evolved from. As pointed out
by Howe, Lie theoretic ideas lie at the heart of much of standard undergradu-
ate linear algebra, and exposure to them can inform or motivate the study of
the latter; we frequently describe such topics in enough detail to provide the
necessary background for the benefit of readers unfamiliar with them.

Outline of the Chapters

Each chapter contains exercises designed to consolidate and deepen readers’
understanding of the material covered. We also use these to explore related
topics that may not be familiar to all readers but which should be in the
toolkit of every well-educated mathematics graduate. Here is a brief synopsis
of the chapters.

Chapter 1: The general linear groups GL, (k) for k = R (the real numbers)
and k = C (the complex numbers) are introduced and studied both as groups
and as topological spaces. Matriz groups are defined and a number of standard
examples discussed, including special linear groups SL,(k), orthogonal groups
O(n) and special orthogonal groups SO(n), unitary groups U(n) and special
unitary groups SU(n), as well as more exotic examples such as Lorentz groups

ix



X Matrix Groups: An Introduction to Lie Group Theory

and symplectic groups. The relation of complex to real matrix groups is also
studied. Along the way we discuss various algebraic, analytic and topologi-
cal notions including norms, metric spaces, compactness and continuous group
actions.

Chapter 2: The erponential function for matrices is introduced and one-
parameter subgroups of matrix groups are studied. We show how these ideas
can be used in the solution of certain types of differential equations.
Chapter 3: The idea of a Lie algebra is introduced and various algebraic
properties are studied. Tangent spaces and Lie algebras of matrix groups are
defined together with the adjoint action. The important special case of SU(2)
and its relationship to SO(3) is studied in detail.

Chapters 4 and 5: Finite dimensional algebras over fields, especially R or C,
are defined and their units viewed as a source of matrix groups using the reduced
reqular representation. The quaternions and more generally the real Clifford
algebras are defined and spinor groups constructed and shown to double cover
the special orthogonal groups. The quaternionic symplectic groups Sp(n) are
also defined, completing the list of compact connected classical groups and their
universal covers. Automorphism groups of algebras are also shown to provide
further examples of matrix groups.

Chapter 6: The geometry and linear algebra of Lorentz groups which are
of importance in Relativity are studied. The relationship of SLy(C) 40 the
Lorentz group Lor(3,1) is discussed, extending the work on SU(2) and SO(3)
in Chapter 3.

Chapter 7: The general notion of a Lie group is introduced and we show that
all matrix groups are Lie subgroups of general linear groups. Along the way
we introduce the basic ideas of differentiable manifolds and smooth maps. We
show that not every Lie group can be realised as a matrix group by considering
the simplest Heisenberg group.

Chapters 8 and 9: Homogeneous spaces of Lie groups are defined and we show
how to recognise them as orbits of smooth actions. We discuss connectivity of
Lie groups and use homogeneous spaces to prove that many familiar Lie groups
are path connected. We also describe some important families of homogeneous
spaces such as projective spaces and Grassmannians, as well as examples related
to special factorisations of matrices such as polar form.

Chapters 10, 11 and 12: The basic theory of compact connected Lie groups
and their mazimal tori is studied and the relationship to some well-known ma-
trix diagonalisation results highlighted. We continue this theme by describing
the classification theory of compact connected simple Lie groups, showing how
the families we meet in earlier chapters provide all but a finite number of the
isomorphism types predicted. Root systems, Weyl groups and Dynkin diagrams
are defined and many examples described.
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Some suggestions for using this book

For an advanced undergraduate course of about 30 lectures to students already
equipped with basic real and complex analysis, metric spaces, linear algebra,
group and ring theory, the material of Chapters 1, 2, 3, 7 provide an introduc-
tion to matrix groups, while Chapters 4, 5, 6, 8, 9 supply extra material that
might be quarried for further examples. A more ambitious course aimed at pre-
senting the classical compact connected Lie groups might take in Chapters 4, 5
and perhaps lead on to some of the theory of compact connected Lie groups
discussed in Chapters 10, 11, 12.

A reader (perhaps a graduate student) using the book on their own would
find it useful to follow up some of the references [6, 8, 17, 18, 25, 29] to see
more advanced approaches to the topics on differential geometry and topology
covered in Chapters 7, 8, 9 and the classification theory of Chapters 10, 11, 12,

Each chapter has a set of Exercises of varying degrees of difficulty. Hints
and solutions are provided for some of these, the more challenging questions
being indicated by the symbols A or A A with the latter intended for
readers wishing to pursue the material in greater depth.

Prerequisites and assumptions

The material in Chapters 1, 2, 3, 7 is intended to be accessible to a well-
equipped advanced undergraduate, although many topics such as non-metric
topological spaces, normed vector spaces and rings may be unfamiliar so we
have given the relevant definitions. We do not assume much abstract algebra
beyond standard notions of homomorphisms, subobjects, kernels and images
and quotients; semi-direct products of groups are introduced, as are Lie alge-
bras. A course on matrix groups is a good setting to learn algebra, and there
are many significant algebraic topics in Chapters 4, 5, 11, 12. Good sources of
background material are [5, 15, 16, 22, 28]

The more advanced parts of the theory which are described in Chap-
ters 7, 8, 9, 10, 11, 12 should certainly challenge students and naturally point
to more detailed studies of Differential Geometry and Lie Theory. Occasionally
ideas from Algebraic Topology are touched upon (e.g., the fundamental group
and Lefschetz Fixed Point Theorem) and an interested reader might find it
helpful to consult an introductory book on the subject such as [9, 20, 25].
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