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Series Foreword

The ACM Doctoral Dissertation Award is presented each year by the
Association for Computing Machinery (ACM). This award recognizes the
best English-language dissertation written in a computer-related field during
the academic year. The winning author receives a cash award of $1,000 from
ACM. In addition, the winning dissertation is published by the MIT Press,
with the author receiving appropriate royalties.

This was the sixth competition to be held. Schools were asked to nom-
inate their best dissertations among those accepted between July 1, 1986,
and June 30, 1987. By a screening process in which each of the forty-
one nominated dissertations was reviewed by several external referees, five
dissertations were selected for final review. A committee with representa-
tives from both industry and academia then read the five final selections
and chose the winner. The members of the committee were Doug Degroot,
David Johnson, Fred Maryanski, Jack Minker, Steve Muchnik, and Larry
Snyder. The dissertation they chose was “The Complexity of Robot Motion
Planning,” by John F. Canny. Dr. Canny’s thesis work was supervised by
Professor Tomas Lozano-P érez of the Massachusetts Institute of Technology.

Canny’s thesis is a ground-breaking study of the algorithmic aspects
of robotics, with material enough for two award winners. In particular he
is concerned with the problem of planning 3-dimensional movement in the
presence of obstacles and other constraints. He resolves long-open problems
concerning the complexity of motion planning problems, and for the central
problem of finding a collision free path for a jointed robot in the presence
of obstacles, he obtains exponential speedups over existing algorithms by
applying high-powered new mathematical techniques. Moreover, he has paid
much attention to his representations and algorithms, so that both the high
level mathematics and the low level implementation details are presented
with unusual precision and clarity. The work presents a truly outstanding
example of doctoral research in computer science.

David S. Johnson, Chairman
ACM Doctoral Dissertation Award Subcommittee



Preface

Robotics is a discipline that lies on the boundary between several fields.
In this thesis we are interested in the computational complexity of planning
collision-free motions for a robot in an environment filled with obstacles.
The tools for analysis of algorithms and complexity come from computer
science, but we also need ideas from differential topology and commutative
algebra. The results we obtain depend crucially on the use of all of these
ideas, and would be impossible without the same level of cross-fertilization.

The main problem we tackle is the “generalized movers’ problem”, which
is the problem of moving a general robot, which could be an arm or a mobile
robot, in a three dimensional environment filled with obstacles. The first
general solution for this problem was given by Schwartz and Sharir [SS],
who showed that it could be solved in time double-exponential in the number
of degrees of freedom. Since then, there have been steady improvements in
algorithms for special cases of the problem, and these often have exponents
that are linear in the number of degrees of freedom. However, they involve
enormous constants due to the cost of exact computation on algebraic num-
bers. The main contribution of this thesis is the roadmap algorithm, which
solves the generalized movers’ problem in single-exponential time, with ex-
ponent equal to the number of degrees of freedom. This algorithm equals
or betters the asymptotic performance of most special purpose algorithms,
and has dramatically lower constants.

The improvement derives from the following ideas: Firstly, we use a
coarse partition or stratification of the configuration space of the robot.
This stratification divides configuration space into a small number of simple
geometric pieces. Secondly, we use multivariate resultants for solution of
system of polynomials in many variables. The multivariate resultant allows
elimination of several variables in single-exponential time. Finally, from
bounds on the size of the multivariate resultant, we derive a very general gap
theorem for systems of polynomials. The gap theorem gives lower bounds
on the separation of distinct algebraic numbers defined by any system of
polynomials of a certain size. The theorem makes it possible to use binary
approximations to algebraic numbers with no loss of accuracy.

The roadmap algorithm can either be used directly on the set of collision-
free configurations, or on a subset of maximal clearance configurations. This



suggests the use of Voronoi diagrams, but the usual definition is very dif-
ficult to work with in a high-dimensional configuration space. Instead we
introduce a new kind of Voronoi diagram which is based on a distance func-
tion derived directly from the boundary surfaces in configuration space. Its
algebraic complexity is lower in many cases, and it is shown to be complete
for motion planning.

We also give lower bounds for some extensions of the generalized movers’
problem. While the movers’ problem is solvable in polynomial time for any
fixed number of degrees of freedom, when a shortest path is sought, or when
the obstacles can move faster than the robot, the planning problem is prov-
ably hard even in three dimensions. In particular we show that the euclidean
shortest path problem in three dimensions, a major open problem in com-
putational geometry, is NP-hard. The “2-d asteroid avoidance problem” is
also shown to be NP-hard. Finally, when compliant (sliding) motion of the
robot is allowed, and uncertainty is taken into account, motion planning in
three dimensions becomes hard for non-deterministic exponential time.

The thesis contains several chapters with fairly heavy mathematical con-
tent. For many of the geometric ideas, figures have been included. These
should give the general reader a good flavor of what is going on. The de-
pendencies between chapters have been kept to a minimum, and each can
be read in isolation. The exception to this is chapter 1, which contains
definitions and terminology used throughout the later chapters. Chapter 2
concerns computation of configuration space descriptions from physical de-
scriptions of the robot and obstacles. It contains a short summary of the
properties of quaternions, which are used to represent the configuration of a
free polyhedron. Chapter 3 describes the multivariate resultant and the gap
theorem. Chapter 4 is the heart of the thesis. Stratified sets are introduced,
and the roadmap algorithm is described. Some familiarity with singularity
theory is useful here. Chapter 5 describes the simplified Voronoi diagram,
and uses simple homotopy arguments to show that the diagram is complete
for motion planning. Chapter 6 is pure computational geometry. It gives
lower bounds for problems of 3-d shortest path, 2-d asteroid avoidance, and
3-d complaint motion planning with uncertainty.

p. 4%
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Chapter 1

Introduction

The objective of robot motion planning is to automatically guide a robot
around in an environment filled with obstacles, and to choose forces to be
applied when assembling objects. Economic considerations often mandate
the use of a cost function on the robot’s motion, such as time duration or
the amount of energy required. When planning a trajectory for the robot,
which gives position as a function of time, planning must take into account
physical limitations of the robot. For example, the motors that drive the
robots’s joints will have limited torque. The sampling rate of the digital
controllers for the motors usually limits the maximum speed of a trajectory
that the robot can track successfully. So there are many possible variations
on the motion planning problem, where some or all of these extra constraints
are taken into account. This thesis studies the complexity of several funda-
mental classes of problem, and introduces some novel geometric techniques
for solving them.

The most difficult planning problems arise in assembly, where clearances
between parts are typically smaller than the robot’s positioning or sensing
accuracy. The robot cannot consistently execute motions below this accu-
racy, and when it attempts to do so, the results of its actions are no longer
deterministic. Such a motion can lead to any of several qualitatively differ-
ent situations. There is no obvious alternative open to the planner except
the enumeration of all the possibilities, leading to a combinatorial explosion
with the number of plan steps.



