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Preface

In research in theoretical physics of the past years, work in the quantum
theory of fields has held a significant place. The student who wishes to become
acquainted, by means of periodicals, with this branch of study will often find
access difficult, even though he may be fully conversant with elementary quantum
mechanics. Many of my colleagues who have introduced their pupils to the
original literature agree with me in this. This book may help make that access
easier. Naturally, I have wondered whether the theory is well enough estab-
lished to be dealt with in a text-book, but I believe I can ignore such considera-
tions. Certainly the theory has a problematic aspect (see “Self-energy’’ in the
index). If, in the near future, important progress in this theory could be foreseen,
we might expect some parts of this book to become rapidly obsolete, yet we can
hardly hope for so favorable a development at the present time. While waiting
for the liberating new ideas, we must depend on our present theory, and so it
seems worth while to make the theory more easily accessible to the interested.
Only those who know the theory can understand the problems.

As the title suggests, this book is only an introduction, not an all-inclusive
account. The didactic purpose precludes a too systematic approach. It ap-
peared appropriate to start with the “canonical’”’ quantization rules of elementary
quantum mechanics (Heisenberg’s commutation relations), even though further
investigation shows that these rules are too narrow and must be generalized,
as, for example, in dealing with particles obeying the Pauli exclusion principle.
On the other hand, I have not attempted to deal separately and in detail with
the classical theory of wave fields. No doubt, it would have been instructive to
illustrate certain deductions in quantum theory by pointing out the correspond-
ing classical considerations; however, since the operator technique of quantum
mechanics often simplifies the calculations, I have preferably used the quantum
version.

In the first chapter the fundamentals of the theory are dealt with in a general
manner, that is, without specification of the field equations or the Lagrange
function. The remaining chapters are devoted to particular field types which

by means of quantization are associated with particles of various spin, charge,
v



vi PREFACE

and mass values. No effort was made to attain completeness of treatment; the
fields considered may be regarded as typical examples. Naturally, the electro-
magnetic field and the electron-wave field cannot be omitted. In order to spare
the reader unnecessary difficulties, I have deferred many questions, which could
have been handled earlier in the general part, to the particular chapters, although
at the cost of some repetition. Still, I believe the general part is indispensable,
as it is here that the inner homogeneity and consistency of the theory is mani-
fested to some extent. 1In §4 especially, the proof that the field quantization is
Lorentz-invariant is prepared so far that it can be completed for the particular
fields without much trouble; at the same time it becomes clear why the “inva-
riant D-function’ automatically appears in the relativistic commutation rela-
tions. The reader who finds Chapter I difficult in places is urged to study the
examples of scalar fields (§6 and §8) as illustrations. The sections in small
type are devoted to special questions and applications. The reader may omit
these if he wishes.

It is assumed that the reader is acquainted with such fundamentals as are to
be found in the current text-book literature. This applies not only to elementary
quantum mechanics but especially to Dirac’s wave mechanics of spin-electrons
(from §17 on). The reader will find the necessary preparation for instance in
the article by W. Pauli in Geiger-Scheel’s Handbuch der Physik, Volume 24, 1.

Zurich G. WENTZEL
August, 1942



Preface to the English Edition

I hope the reader will welcome the English translation of my book—initiated
by Interscience Publishers—as much as I do. A rough translation of the text
was made by Mrs. Charlotte Houtermans, and then revised and corrected
scientifically and linguistically by Dr. J. M. Jauch, who also contributed the
Appendix. Dr. F. Coester was kind enough to read proof of the galleys and to
prepare the index.

The demand for an introduction into the quantum theory of fields seems to be
even larger today than some years ago when this book was written. New
interest in the subject has been awakened by recent experimental discoveries:
the fine structure anomalies of the hydrogen levels, and the correction to the
magnetic moment of the electron, which have been interpreted as electromagnetic
self-energy terms; the observation of several kinds of mesons and their artificial
production, marking a new development that promises a much better under-
standing of mesons and may eventually lead to an improved meson field theory
of nuclear interactions.

As to quantum electrodynamics, it was not possible to incorporate any
references to the new theoretical developments into the present edition. We
must be content to provide the reader with such basic information as will enable
him to follow independently the original literature now appearing in the periodi-
cals. In the chapters on meson theory no changes were necessary except in
§15, dealing with the applications to problems of nuclear physics; here it was
easy to modernize the text and to adapt it to the present state of knowledge.
In various sections throughout the book references to more recent publications
have been added. The most significant addition to the original is the Appendix,
on the general construction of the energy-momentum tensor according to F. J.
Belinfante.

I hope that the book proves useful to many readers in the English-speaking
world.

Chicago G. WENTZEL
January, 1949

vil
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Chapter 1

General Principles

§1. The Canonical Formalism

In classical physics a “field” is described by one or several (real) space-time
functions ¥,(x, f) which satisfy certain partial differential equations, the so-
called “field equations.” An alternative procedure is to start with a variational
principle chosen in such a way that its Euler differential equations are the same
field equations. Let L be a function of the y,(x, #) and of their first time and
space derivatives:!

(I'I) ~'-=l-('%,v Y1 ";)1; Y, V ¥y, '(.Pg,' .)
By integration over a volume V and a time interval from ¢ to ¢’ we form:

.;"dtfde (py, ...) =1
t 14

Varying the function y, for a fixed region of integration:
Yo (%, 8) =5 (%, 1) + 0ys (%, 0),

subject to the restriction that the variations 8y, vanish at the boundary of the
domain of integration (i. e., at the surface of the volume V' and for¢ = # and
t = "), one obtains in the familiar way:

o
e
f ﬁxf 6%+2 a% axk Oys + ;;f ;6%}

3xk

-
. oL o ol e oL

= dt/dxé Og \—— — 2—_?___

‘,[ s > ] oy & ox, 5 0¥ O oY,

0%,

1 Partial derivatives with respect to the time will be indicated by dots: 3y /8t =
1



2 I. GENERAL PRINCIPLES

We require now that the classical field be determined by the condition that the
integral I shall be stationary (6 I = o) for arbitrary variations éy., which satisfy
the above-mentioned conditions and for an arbitrary choice of the integration
region. From this it follows that for all times and for all positions:

oL d oL o oL _ =14, 1)
(x4} oy, % ox _ oy, ot op, T
0%y

These equations are by (1.1) partial differential equations of the second order
at most for the field functions y,; they are the field equations.!

This variational principle can be connected with Hamilton’s least action
principle of classical mechanics. The field variables ¢, differ from the coordi-
nates ¢; of a mechanical system of particles because the latter are only functions
of the time, while the former depend on the position vector x as well. It is,
however, possible to establish a correspondence between ¢, and the generalized
coordinates ¢; if we let the discrete index 7, which numbers the (finite) degrees
of freedom of the system, correspond not only to the discrete index o but also
to the continuous variable x of the position vector. By this procedure a field
may be interpreted as a mechanical system of infinitely many degrees of freedom.

1 One calls
oL 7] oL __ oL
oy, - 07}, 3 ay, — Oy,
07y

the “functional derivative’’ of L =fdx L with respect to Y. With this notation, (1.2) reduces

to:
o oL oL

aa‘l}a - a'pu.

The substitution:

5 2
L—>L +2 a—xk/ik (Y1 Y. - -) + a—tAo(V’x:Ws:- <o)

where Aq, . . . Ag are arbitrary functions of the ¥, leaves the field equations invariant, for the

integral:
oA a4,
f dat f dx{ E 6x: }

may be transformed into an integral over the surface of the space-time region and hence its
variation vanishes identically. The Ao, . . . A; may even depend on the derivatives of the Vo,
provided L remains independent of the second derivatives.




§1. THE CANONICAL FORMALISM 3

This analogy may be further expounded by subdividing the space into finite
cells 62(® which we distinguish by the upper index s, the value of the field function
Ve in the cell (s) shall be denoted by ¢, (f). The space derivatives of ¥, will
be replaced by the corresponding differences. In this way it is possible to
represent the function L (1.1), or rather its value L in any cell (s), as a function
of the generalized coordinates ¢; = .’ and of the corresponding velocities
é,- = ¥, Similarly for the sum over all the cells: '

L::JT&%”LW.
s

The variational principle stated above requires then that the time integral:

v

I=[atL(gyqs - quin---)
o

shall be extremal for the variations ¢;() — ¢;(t) + 8¢;(f) provided 8g; vanishes
for ¢ = ¢ and ¢ = ¢’ as well as in cells (s) outside the region V. Since V is
arbitrary, this corresponds precisely to Hamilton’s principle in mechanics. The
field equations (1.2), which are Euler’s differential equations of the variational
principle, correspond to Lagrange’s equations of motion with the Lagrange
function L. In the transition to the limit of infinitesimal cells, one obtains for
the Lagrange function the integral extended over all space:

(r.3) L=[dxL(py, Vy 91; 90 V o Pai ---).

We shall call the integrand L “differential Lagrange function.”

In order to make the transition to Hamilton’s formalism—still in the frame-
work of the classical theory—we must introduce first the momenta p; = aL/aq;,
which are canonically conjugate to the coordinates g;: with L = 2 8x() | (&) the
quantity canonically conjugate to ¢; = ¢, becomes:!

aL®
29,

p,' = 5x(") .

In a field theory it is customary to denote the space-time function, obtained
from L (1.1) by partial differentiation with respect to ¥, (for constant ¥, and
V¥.), as the field canonically conjugate to .

: J/g"l is found in L® only, and not in the remaining terms of the sum in L(s" 5 s), since
according to the definition (1.1) L at the point x depends only on the value of yL’, at the same

point (and not on V»im also).



4 I. GENERAL PRINCIPLES

6L
Er

(1.4) Mo =
Hence, if its value in the cell (s) is #,¥:
P; = 029 . 7, ).

Hamilton’s function is then obtained by:
= ZP: g§i—L = 2 0x {2 7o) g — L(’)},
i 3 : '

H is to be considered as a function of the ¢; and p; or of the 4 and »,. In
the limit of the continuum we obtain:

(1.5) H= [dxH, H=2 e —L.

By eliminating ¢, with the help of (1.4) we may consider the “differential
Hamiltonian function” H as a function of the ¥,, V¢, and =,:

(I6) H= ”(‘Px» v Y1 s Yo V Yo, o, - --)-

Introducing the Hamiltonian H makes it possible to replace the field equations
(1.2) by the “canonical field equations’” which correspond to the canonical
(Hamilton) equations of motion in classical particle mechanics:!

oH . oH
op;’ Pr= 94;

We shall, however, not elaborate on this point here, since it is not essential for
obtaining the corresponding equations in quantum theory.

Since our classical y-field is, as we have seen, equivalent to a mechanical
system of particles, with infinitely many degrees of freedom, it is natural to
carry out its quantization according to the standard rules of quantum mechanics.
The transition from classical to quantum mechanics can be effected by replacing
the canonical variables ¢;, p;, by Hermitian operators which satisfy the com-
mutation rules:?

g =

h
(94, 97) = (b3 P#] =0, [Ps qr] = 7 0;

! More details in: Heisenberg and Pauli, Z. Pkys. 56, 1, 1929, §1.

"0ur' notations are the usual ones: [a, §)] = @b — ba, & = Planck’s constant divided by
2w, 4 = imaginary unit, 8;; = 1, §;; = oforj » j'.



§1. THE CANONICAL FORMALISM S

The mechanical properties of the system are determined by its Hamiltonian
which is formally taken over from the classical theory, but reinterpreted as
Hermitian operator. In a similar way we may consider the properties of a

quantized field as defined by its Hamiltonian H = / dx H or also by its La-
grangian L = [ dx L, from which H may be obtained according to (1.4) and (1.5).

The ¢, (x) and 7, (x) in H (1.6) stand now for Hermitian operators, with com-
mutation rules which result from those of ¢; = ¥.,?, p; = 82 =, by the
transition to the continuum. This procedure is characteristic of the so-called
“canonical field quantization” as it was first formulated for general fields by
Heisenberg and Pauli.!

Accordingly we postulate the following equations:

- . . . h Oy
W0, = [ 2] =0, (a9l = B ot

Writing ¥, (x), 7, (x), instead of ¥,*, 7,(?, we find for the commutation rules:
’ ? h ’
(1.7) (o @),y ()] =7, (), 7, ()] =0, [7, (%), 9 (¥)] = ~ 80+ 0(x,5);

Here § (x, «') stands for a function the value of which is (8x(9)~! or o, according
to whether the points x and &’ lie in the same or in different cells. Integrating

for fixed «’ with respect to x, we obtain f dx & (x, ') = 1. Furthermore,
f dxf (x) 6 (x, «') is equal to the average value of the function f(x) taken over the

cell (s) in which 2’ is situated. In the limit of the continuum (cell volume

8x® — o) & (x, 2’) goes over into the (three-dimensional) Dirac é-function:
oforx + «/,

(1.8) O{x, &) >d(x—2') =

oo for x =«’, insucha way that

fdxd(x——x’) =1

This limiting process has meaning only if § (x, ) appears in the integrand of a
space integral.

(1.9) J a5 i@ 6 %) — [dx j(x) 6(x—x') = (x').

It has become customary to write directly § (x — '), instead of & (%, «'), and we
shall adopt the same notation in the following, since there is no doubt as to its
meaning.

1 Cited above.
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In the quantum theory of fields y., 7, represent operators which depend on
the coordinates x of the position as parameters' and satisfy the commutation
rules (1.7,.8) Later on we shall introduce particular representations for these
operators when we discuss special fields. It should be emphasized that for the
time being we consider the operators y,(x), m,(x) as time-independent, the
construction of time-dependent operators being reserved for a later discussion
in §4 in connection with the question of relativistic invariance. Together with
¥, and 7., H, too, is a space-dependent operator and the integral Hamiltonian

H = f dx H is then an operator independent of position. It may be necessary

to arrange non-commuting factors in a suitable way so as to make H a Hermitian
operator (symmetrization).

At this point a particular case should be mentioned which plays a certain
role in the quantum theory of fields. It happens with certain Lagrangians that
some field equations do not contain the second derivatives ¥, with respect to
time; these equations then represent ‘‘subsidiary conditions” which establish
a relationship between the variables y, and V.2 In this case the variables
Vs, T, are no longer independent of each other, and it follows that the com-
mutation rules (1.7) lead to contradictions. A case like this will be encountered
in §§12 and 16 where one of the ¥, does not occur in L and consequently the
corresponding =, = dL/@ V. vanishes identically. The commutation rule
[7.(x), ¥o(x")] = — i b 8(x — «’) is then obviously incorrect. We will see
later how the quantization can be carried through in such a case. One pogsi-
bility is to eliminate the redundant field components and to postulate the com-
mutation rules (1.7) for the remaining independent variables (cf. §12, page 77).
By this elimination procedure the Hamiltonian may become dependent on the
space derivatives of the =, so that we have instead of (1.6):

(1.10) H=H s,V w1, 7,V 75 ..0).

! x itself is no operator, but a “c-number.”
2 If the Lagrangian has, for instance, the form:
L=y -F+6G,
where F is independent of all t/;, and G of ¢',, then the equation (1.2) with ¢ = 1 has evidently
this above-mentioned character of a subsidiary condition. For then:
= _a_.L = F,
oy,
i.e., m depends only upon the ¥, and their space derivatives. If the operators y, all commute
with each other, it follows that =, also commutes with all ¥, in contradiction to (1.7).
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The following considerations hold also for this more general type of Hamiltonians.

In quantum mechanics, as is well known, the canonical equations of motion
are valid as operator equations on account of the commutation rules of the
g;and p;:

. z 0 oH
= H il = S == »
q; A [ ’ ‘I:] P Pj a q;
In general the time derivative of any function ¢ of the ¢;and p; not depending
on time exvlicitly, may be expressed by:!

b= H.p)]=

(r.11) ‘;’E%[H’ ¢!

Since we have taken over the commutation rules of particle mechanics, the same
result holds for the field theory: the time derivative of any field quantity, i.e.,
any functional of the y,(x) and m,(x) and their space derivatives depending
not explicitly on time, satisfies an equation (1.11). In particular the operators
V. and =, are defined by:

(x.12) b= Hop @), % W) =7 Ha, @]

The evaluation of these commutators with the help of the commutation rules
(1.7,.8) leads to operator equations which are formally equivalent with the field
equations (1.2) in the same way as the canonical equations of motion in particle
mechanics (q; = dH/dp;, p; = — 0H/dq;) are equivalent to Lagrange’s equa-
tions. We forego here a general proof.? In the following application of the
theory to special types of fields, we shall verify this equivalence in each case.
On account of their analogy to the canonical equations of motion, we shall refer

! To clarify this it is to be remembered that ¢ signifies an operator which does not depend
on time explicitly. The operator ¢ as defined by (1.11) is therefore not simply the partial
derivative of ¢ with respect to time. It derives its significance, however, from the well-known

theorem in quantum mechanics that the expectation value of ¢ is equal to the time derivative
of the expectation value of ¢, thus:

i di

% (H, ¢l =

Qe
i
%

*Cf. footnote 1, page z, Heisenberg and Pauli. The commutators (1.12), are equal to the
functional derivatives of the Hamiltonian H with respect to », and — ., respectively.

oH
oo

2 %
7 Hiye]= o (H, 5] = —

[Cf. footnote 1, page o; from it results the stipulated equivalence with (1.2)].
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to the operator equations which stem from the definitions (1.12) as “‘canonical
field equations.”

All questions regarding the stationary states of the system, the eigen values
of H or any other field quantities, can be answered with the well-known methods
of quantum mechanics, notwithstanding the fact that we are dealing with a
system of infinitely many degrees of freedom. Examples will follow. Before
we go into this, some questions of a more general character shall be discussed
which have no analogy in particle mechanics.

§ 2. Conservation Laws for Energy, Momentum, and Angular Momentum

We return to the classical (non-quantized) theory. The conservation of
energy is expressed by the equation dH/dt = o, provided that the Lagrangian
does not depend explicitly on time. It is to be expected that the application of
this conservation law to the integral Hamiltonian function (1.s), which repre-
sents the total energy of the field, leads to the interpretation of the differential
Hamiltonian function H as an energy density, for which a continuity equation
holds.

cH

(2.1) 6t_+ V8§ =o.
One obtains in fact from (1.4,.5):
H [ e a .

@ 2y, g,

o

L.l Cp, ol \)
P + Y, + v = 5 }
cy, oy, = 0% 0y, I
ax,‘. )
and using the field equations (r1.2):
eH .6 el “p, ol |
ot _—Z% lw"%:aay)o T oxy, 6'0‘1,0:':
EV; axk )

- St g
k k c F) w“

ox k
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hence the continuity equation (2.1) is satisfied by:

. oL
(2.2) S =%’% R
. i}
0%
This definition of the energy current density is however not unique, since

any source-free field could be added to S.
Furthermore we will try to define the momentum of the field:

(2.3) G = f dx G
so that momentum is conserved:

4G o
(2.4) ot + - 61’,’ =0

7

Here T is a stress tensor. With the notation:

(2.5) Xy, ==1C1,
(2.6) Tu=—H Tis=—8 Tu=icG (k=123
one can summarize the conservation laws (2.1,.4)
4
0T u»
(27) ZIW—C’T—O (‘V—I4)
=

An expression for the energy-momentum tensor T, which agrees in the 4,4- and
k,4-components with (1.5) and (2.2), is:

oy ol ‘
(2.8) Tow=—2, ax:‘ T L b,y
0%y

This expression also satisfies the conservation equations (2.7), provided that L
does not depend explicitly on the x, (v = 1...4), for a short calculation gives:

A oy, (K e oL oL
D =S S !

= - 9%, \I": 0%, 5 oy, oy, |
U Cxy )

and this vanishes on account of the field equations (1.2), which with the notation



