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Introduction

The theory of Mackey functors has been developed during the last 25 years in a series
of papers by various authors (J.A. Green [8], A. Dress [5], T. Yoshida [17], J. Thévenaz
and P. Webb [13],[15].[14], G. Lewis [6]). It is an attempt to give a single framework
for the different theories of representations of a finite group and its subgroups.

The notion of Mackey functor for a group i can be essentially approached from
three points of view: the first one ([8]), which I call “naive”, relies on the poset
of subgroups of (. The second one ([5].[17]) is more “categoric”, and relies on the
category of Gi-sets. The third one ([15]) is “algebraic”, and defines Mackey functors
as modules over the Mackey algebra.

Fach of these points of view induces its own natural definitions, and the reason
why this subject is so rich is probably the possibility of translation between them.
For instance, the notion of minimal subgroup for a Mackey functor comes from the
first definition, the notion of induction of Mackey functors is quite natural with the
second. and the notion of projective Mackey functor is closely related to the third
one.

The various rings of representations of a group (linear, permutation, p-permuta-
tion...), and cohomology rings, are important examples of Mackey functors. having
moreover a product (tensor product or cup-product). This situation has been axiom-
atized, and those functors have been generally called (/-functors in the literature, or
Green functors.

This definition of a Green functor for a group (i 1s a complement to the “naive”
definition of a Mackey functor: to each subgroup of (i corresponds a ring, and the vari-
ous rings are connected by operations of transfer and restriction, which are compatible
with the product through Frobenius relations.

The object of this work is to give a definition of Green functors in terms of G-
sets, and to study various questions raised by this new definition. IFrom that point
of view, a Green functor is a generalized ring, in the sense that the theory of Green
functors for the trivial group is the theory of ordinary rings. Now ring theory gives a
series of directions for possible generalizations, and I will treat some cases here (tensor
product, bimodules. Morita theory, commutants, simple modules, centres).

The first chapter deals only with Mackey functors: my purpose was not to give a
full exposition of the theory, and I just recall the possible equivalent definitions, as
one can find for instance in the article of Thevenaz and Webb ([15]). 1 show next
how to build Mackey functors “with values in the Mackey functors™. leading to the
functors H(M, N) and M&N, which will be an essential tool: they are analogous
to the homomorphisms modules and tensor products for ordinary modules. Those
constructions already appear in Sasaki ([12]) and Lewis ([6]). The notion of n-linear
map can be generalized in the form of n-linear morphism of Mackey functors. The
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reader may find that this part is a bit long: this is because I have tried here to give
complete proofs, and as the subject is rather technical. this requires many details.

Chapter 2 is devoted to the definition of Gireen functors in terms of G-sets. and to
the proof of the equivalence between this definition and the classical one. It is then
possible to define a module over a Green functor in terms of G-sets. I treat next the
fundamental case of the Burnside functor, which plays for Green functors the role of
the ring Z of integers.

In chapter 3, I build a category C4 associated to a Green functor A, and show that
the category of A-modules is equivalent to the category of representations of C4. This
category is a generalization of a construction of Lindner ([9]) for Mackey functors, and
of the category of permutation modules studied by Yoshida ([17]) for cohomological
Mackey functors.

Chapter 4 describes the algebra associated to a Green [unctor: this algebra enters
the scene if one looks for G-sets Q2 such that the evaluation functor at Q is an equiva-
lence of categories between the category of representations of C,4 and the category of
Ende, (©)-modules. This algebra generalizes the Mackey algebra defined by Theve-
naz and Webb ([15]) and the Hecke algebra of Yoshida ([17]). It is possible to give a
definition of this algebra by generators and relations.

This algebra depends on the set €, but only up to Morita equivalence. Chapter 5
is devoted to the relation between those Morita equivalences and the classical notion
of relative projectivity of a Green functor with respect to a G-set (see for instance
the article of Webb [16]). More generally, I will deduce some progenerators for the
category of A-modules.

Chapter 6 introduces some tools giving new Green functors from known ones: after
a neat description of the Green functors H(AM, M), I define the opposite functor of
a Green functor, which leads to the notion of right module over a Green functor. A
natural example is the dual of a left module. The notion of tensor product of Green
functors leads naturally to the definition of bimodule, and the notion of commutant
to a definition of the Mackey functors H (M, N) and M4 N.

Those constructions are the natural framework for Morita contexts, in chapter 7.
The usual Morita theory can be generalized without difficulty to the case of Green
functors for a given group .

The chapters 8,9, and 10 examine the relations between Green functors and bisets:
this notion provides a single framework for induction, restriction, inflation, and coin-
flation of Mackey functors (see [2]).

In chapter 8, I show how the composition with {7, if {7 is a G-set-1, gives a
Green functor A o I/ for the group H starting with a Green functor A for the group
(:. This construction passes down to the associated categories, so there is a corre-
sponding functor from Caorr to C4. This gives a functor between the categories of
representations, which can also be obtained by composition with (7. T study next
the functoriality of these constructions with respect to [, and give the example of
induction and restriction.

Chapter 9 is devoted to the construction of the associated adjoint functors: I build
a left and a right adjoint to the functors of composition with a biset M +— M o U/
for Mackey functors, and I give the classical examples ol induction. restriction and
inflation, and also the less well-known example of coinflation.

Chapter 10 is the most technical of this work: [ show how the previous left adjoint
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functors give rise to Green functors, and I study the associated functors and their
adjoints between the corresponding categories of modules. An important consequence
of this is the compatibility of left adjoints of composition with tensor products, which
proves that if there is a surjective Morita context for two Green functors A and B
for the group G, then there is one for all the residual rings A(H) and B(H), for any
subgroup H of G.

In chapter 11, I classify the simple modules over a Green functor, and describe
their structure. Applying those results to the Green functor A®A°, I obtain a new
proof of the theorem of Thévenaz classifying the simple Green functors. Finally, I
study how the simple modules (or similarly defined modules) behave with respect to
the constructions H(—,—) and —@—.

Chapter 12 gives two possible generalizations of the notion of centre of a ring, one
in terms of commutants, the other in terms of natural transformations of functors.
The first one gives a decomposition of any Green functor using the idempotents of
the Burnside ring, and shows that up to (usual) Morita equivalence, it is possible to
consider only the case of Green functors which are projective relative to certain sets
of solvable mw-subgroups. The second one keeps track of the blocks of the associated
algebras. Then I give the example of the fixed points functors, and recover the iso-
morphism between the center of Yoshida algebra and the center of the group algebra.
Next, the example of the Burnside ring leads to the natural bijection between the
p-blocks of the group algebra and the blocks of the p-part of the Mackey algebra.






Chapter 1

Mackey functors

All the groups and sets with group action considered in this book will be finite.

1.1 Equivalent definitions

Throughout this section, I denote by (i a (finite) group and R a ring, that may be
non-commutative. First I will recall briefly the three possible definitions of Mackey
functors: the first one is due to Green ([8]), the second to Dress ([5]), and the third
to Thévenaz and Webb ([15]).

1.1.1 Definition in terms of subgroups

One of the possible definitions of Mackey functors is the following:

A Mackey functor for the group G/, with values in the category R-Mod of R-modules,
consists of a collection of R-modules M(H), indexed by the subgroups H of G, to-
gether with maps t& : M(K) — M(H) and ri : M(H) — M(K) whenever K is a
subgroup of H, and maps c.y : M(H) — M(*H) for r € (&, such that:

o I L C KN C H, then i;\’lf‘ — tﬁ and zf‘r,ﬁ’ = 1;’
o Ifr,ye Gand H C G then ¢cyzpcon = Cyo.

2 p
e If r € G and H C (G, then cf_”I;\l- = tlﬁr,.,l\- and Cr‘]\'T;\I- = rxk'-c,'”. Moreover

c,y=Idifre H.
e (Mackey axiom) If L € H O K, then

CHH L : B
Tty = Z tLas k CoLonk T Len K
r€L\H/K

The maps tf are called transfers or traces, and the maps 74l are called restrictions.

A morphism ¢ from a Mackey functor M to a Mackey functor N consists of a
collection of morphisms of R-modules 6 : M(H) — N(H). for H C (, such that if
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K C H and z € (7, the squares

; O 7 e . Ox A 01
M(K) —— N(K) M(K) —— N(K) M(H) —— N(H)
| g A e | e
M(H) —— N(H) M(H) —— N(H) M(*H) —— N(*H)
Oy Op 7

are commutative.

1.1.2 Definition in terms of G-sets

If A and H are subgroups of (7, then the morphisms of Gi-sets from GG/ to GG/ H are
in one to one correspondence with the classes x H, where r € (i is such that K~ C H.
This observation provides a way to extend a Mackey functor M to any G-set X, by
choosing a system of representatives of orbits GG\ X, and defining
M(X)= & M(G,)
reG\X

There is a way to make this equality functorial in X, and this leads to the following
definition:

Definition: Let R be a ring. If GG is a (finite) group, let (G-set be the category of
finite sets with a left G action. A Mackey functor for the group (i, with values in
R-Mod, is a bifunctor from (Gi-set to R-Mod, i.c. a couple of functors (M*, M.) ,
with M* contravariant and M, covariant, which coincide on objects (i.e. M*(X) =
M.(X) = M(X) for any G-set X ). This bifunctor is supposed to have the two
following properties:

o (MI)If X and Y are G-sets, let ix and iy be the respective injections from X
and Y into X [[Y, then the maps M*(ix) & M*(1y) and M.(ix) & M.(iy) are
mutual inverse R-module isomorphisms between M(X [Y') and M(X )& M(Y').

o (M2)If
5
T Y
6 J J a
zZ —— X
Jo}

is a cartesian (or pull-back) square of (i-sets, then M*(3).M.(a) = M.(6).M*(v).

A morphism 6 from the Mackey functor M to the Mackey functor N is a natural
transformation of bifunctors, consisting of a morphism 0y : M(X) — N(X) for any
G-set X, such that for any morphism of G-sets f: X — Y, the squares

0y 0y
M(X) —— N(X) M(X) —, N(X)

M.(f) J J N.(f) M=(f) [ [ N*(f)
M(Y) —— N(Y) M(Y) —— N(Y)
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are commutative.

I will denote by Mackg((i) or Mack(G) the category of Mackey functors for (i over
R.
Conversely, if M is a Mackey functor in the sense of this second definition, then one
can build a Mackey functor M, in the first sense by setting

M(H)= M(G/H) th = M.(p) ri = M~ (pl) ot = Mo(4rmr)

where pif : G/K — G//H is the natural projection, and v, 5 : G/H — G/*H is the
map gH +— g ' H = gHa™!

1.1.3 Definition as modules over the Mackey algebra

There is a third definition of a Mackey functor, using the Mackey algebra pup(G):
consider first the algebra () over Z: it is the algebra generated by the elements ¢4,
ril and ¢, p, where H and K are subgroups of G such that K C H, and z € G, with
the following relations:

i = v LCKCH
rRrfl Y LCKCH
CyrHCoH = Cyzti ¥V Ty, H
th=rll =coy Y R Hhe H
ot =tiHe, o VY a, K H
(‘x,l(ri\l' = 7’3{-%,}1 V o, K, H

ZI%:ZTﬁ =]
H H

HyH _ K By g
TRt = z tRaerCokeintTRzn, YV KW CH DL
ceK\H/L

any other product of rif ¢} and ¢, y being zero.

A Mackey functor M for the first definition gives a module M for the “algebra”
ur(G) = Rz u(G) (which is not really an algebra if R is not commutative) defined
by

M= & M(H)
HCG
and a morphism f : M — N of Mackey functors gives a morphism of pug(G')-modules
f:M—N.

It it then possible to define a Mackey functor as a pg((G)-module, and a morphism
of Mackey functors as a morphism of pugr(G)-modules: if M is a pgr(G)-module, then
M corresponds to a Mackey functor M in the first sense, defined by M;(H) = tiM,
the maps 4, v and ¢,y being defined as the multiplications by the corresponding
elements of the Mackey algebra.
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1.2 The Mackey functors M +— My

If Y is a G-set, and M is a Mackey functor for (7, then let My be the Mackey functor
defined by
My(X)=M(X xY)

and for a map of G-sets f: X — X', by
(My)*(f) = M"(f = Id)
(My).(f) = M.(f x Id)

This construction is functorial in Y: if ¥ is another G-set, and if ¢ is a morphism of
G-sets from Y to Y, then there is a morphism of Mackey functors My : My — My,

defined over the GG-set X by
M, x = M.(Id xg): My(X)— My/(X)

To see this. let f: X — X’ be a map of G-sets. Then the square

A/[y'_\'

My (X) —— My(X)
(My).([) l J (My1).(f)
My (X') —— My (X'
M, x:

is commutative, since M.(f x [d)oM,(Idxg) = M.(fxg) = M.(Idxg)oM.(f x Id).
The square
M, x
My (X) —— My/(X)
(My)*(f)I [ (My)™(f)

My(X') —— My (X')
Q‘Ig_.\’r

is also commutative, because the square

X xg
XxY — XxY

fxld}' }fxl(l

X'xY — X'xY'
Id x g

1s cartesian.
There is also a morphism MY from My to My defined over X by

M$% = M*(Id x g) : My (X)— My(X)

In other words, I have defined a bifunctor from G-set to the category Mackp((')
of Mackey functors for G over R, which is equivalent to ugr(G)-Mod. I will check
the conditions (M1) and (M2) for this bifunctor, proving that ¥ — My is a Mackey
functor with values in the category of Mackey functors.



