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Preface

Welcome to Rotterdam and to the International Conference Safecomp 2000, on
the reliability, safety and security of critical computer applications. This already
marks the 19th year of the conference, showing the undiminished interest the
topic elicits from both academia and industry. Safecomp has proven to be an
excellent place to meet and have discussions, and we hope this trend continues
this year.

People and organisations depend more and more on the functioning of com-
puters. Whether in household equipment, telecommunication systems, office ap-
plications, banking, people movers, process control or medical systems, the often-
embedded computer subsystems are meant to let the hosting system realise its
intended functions. The assurance of proper functioning of computers in de-
pendable applications is far from obvious. The millennium started with the bug
and the full endorsement of the framework standard IEC 61508. The variety
of dependable computer applications increases daily, and so does the variety of
risks related to these applications. The assessment of these risks therefore needs
reflection and possibly new approaches. This year’s Safecomp provides a broad
mix of papers on these issues, on progress made in different application domains
and on emerging challenges.

One of the special topics this year is transport and infrastructure. One would
be hard pressed to find a better place to discuss this than in Rotterdam. The
reliability, safety and security of computers is of prominent importance to Rotter-
dam, as a few examples illustrate. Its harbour depends on the reliable functioning
of container handling systems, on the safe functioning of its radar systems, and,
as of recently, on the safe and reliable functioning of the enormous storm surge
barrier at Hoek van Holland.

A new topic for Safecomp is medical systems. These progressively depend
on — embedded — programmable electronic systems. Experience shows that the
medical world lacks the methods for applying these systems safely and reliably.
We welcome a group of people ready to discuss this topic, and hope, by doing
so, to contribute to this field of applications of safe, reliable and secure systems.

Software process improvement also represents a special topic of Safecomp
2000. It proved to be the most fruitful of the three in terms of submitted papers.
There were many contributions from a host of countries, which had to be spread
amongst different session topics.

We wish to thank the International Program Committee’s members, 41 in
total, for their efforts in reviewing the papers and for their valuable advice in
organising this conference. We are also grateful for their contribution to dis-
tributing calls for papers and announcements. Without their help the burden of
organising this conference would have been much greater.



VI Preface

Finally, let us once again welcome you to Rotterdam, a truly international
city and home to people of many nationalities. We hope you take the time not
only to enjoy this conference, but also to find your way around the city, since it
surely has much to offer.

Floor Koornneef
Meine van der Meulen
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The Ten Most Powerful Principles for Quality in
(Software and) Software Organizations for Dependable
Systems
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Abstract. Software knows it has a problem. Solutions abound, but
which solutions work? What are the most fundamental underlying prin-
ciples we can observe in successful projects? This paper presents 10
powerful principles that are not widely taught or appreciated. They are
based on ideas of measurement, quantification and feedback. Our ma-
turity level with respect to 'numbers' is known to be poor. Hopefully, as
we move to higher maturity levels we will also begin to appreciate the
power of measurement and numeric expression of idea. What can we do
right now? I suggest the first step is to recognize that all your quality
requirements can and should be specified numerically. I am not talking
about 'counting bugs'. I am talking about quantifying qualities such as
security, portability, adaptability, maintainability, robustness, usability,
reliability and performance. Decide to make them numeric on your
project. Draft some numeric requirements today, surprise your team
tomorrow!

1 Introduction

All projects have some degree of failure, compared to initial plans and promises. Far
too many software projects fail totally. In the mid 1990s, the US Department of De-
fense estimated that about half of their software projects were total failures! (Source:
N Brown). The civil sector is no better [16]. So what can be done to improve project
success? This paper outlines ten key principles of successful software development
methods, which characterize best practice.

These 10 most powerful software quality principles are selected because there is
practical experience showing that they really get us control over qualities, and over
the costs of qualities. They have a real track record. This record often spans decades
of practice in companies like IBM, HP and Raytheon. There is nothing ‘'new' about
them. They are classic. But the majority of our community is young and experientially

F. Koornneef and M. van der Meulen (Eds.): SAFECOMP 2000, LNCS 1943, pp. 1-13, 2000.
© Springer-Verlag Berlin Heidelberg 2000



2 Tom Gilb

new to the game, so my job is to remind us of the things that work well. Your job is to
evaluate this information and start getting the improvements your management wants
in terms of quality and the time and effort needed to get it.

"Those who do not learn from history, are doomed to repeat it" (Santayana, 1903,
The Life of Reason).

Principle 1: Use Feedback

Experience of formal feedback methods is decades old, and many do appreciate their
power. However, far too many software engineers and their managers are still prac-
ticing low-feedback methods, such as Waterfall project management (also known as
Big Bang, Grand Design). Far too many also are checking the quality of their systems
by relying on testing, ‘late in the day’, when they have finished producing their entire
system. Even many textbooks and courses continue to present low-feedback methods.
This is not from conscious rejection of high-feedback methods, but from ignorance of
the many successful and well-documented projects, which have detailed the value of
feedback.

Methods using feedback succeed; those without seem to fail. ‘Feedback’ is the sin-
gle most powerful principle for software engineering. (Most of the other principles in
this paper are really ideas, which support the use of feedback.) Feedback helps you
get better control of your project by providing facts about how things are working in
practice. Of course, the presumption is that the feedback is early enough to do some
good. This is the crux: rapid feedback. We have to have the project time to make use
of the feedback (for example, to radically change direction, if that is necessary). Some
of the most notable rapid high-feedback methods include:

Defect Prevention Process (originated Mays and Jones, IBM 1983) The Defect Pre-
vention Process (DPP) equates to Software Engineering Institute CMM Level 5 as
practiced at IBM from 1983-1985 and on [14]. DPP is a successful way to remove the
root causes of defects. In the short term (a year) about 50% defect reduction can be
expected; within 2-3 years, 70% reduction (compared to original level) can be experi-
enced and over a 5-8 year timeframe, 95% defect reduction is possible (Sources: IBM
Experience, Raytheon Experience [5]).

The key feedback idea is to ‘decentralize’ the initial causal analysis activity inves-
tigating defects to the grass roots programmers and analysts. This gives you the true
causes and acceptable, realistic change suggestions. Deeper ‘cause analysis’ and
‘measured process-correction’ work can then be undertaken outside of deadline-
driven projects by the more specialized and centralized Process Improvement Teams.

The feedback mechanisms are many. For example, same-day feedback is obtained
from the people working with the specification and, early numeric process change-
result feedback is obtained from the Process Improvement Teams.

Inspection (originated Fagan, IBM 1975) The Inspection method originated in IBM
in work carried out by M. Fagan, H. Mills (‘Cleanroom’) and R. Radice (CMM in-
ventor). It was originally primarily focussed on bug removal in code and code design
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documents. Many continue to use it in this way today. However, Inspection has
changed character in recent years. Today, it can be used more cost-effectively by fo-
cussing on measuring the Major defect level (software standards violations) in sample
areas (rather than processing the entire document) of any software or upstream mar-
keting specifications [9]. The defect level measurement should be used to decide
whether the entire specification is fit for release (exit) downstream to be used, say for
a ‘go/no-go’ decision-making review or for further refinement (test planning, design,
coding).

The main Inspection feedback components are:

e feedback to author from colleagues regarding compliance with software standards.
e feedback to author about required levels of standards compliance in order to con-
sider their work releasable.

Evolutionary Project Management (originated within ‘Cleanroom’ methods, Mills,
IBM 1970) Evolutionary Project Management (Evo) has been successfully used on
the most demanding space and military projects since 1970 [15], [13], [2], [8], [10].
The US Department of Defense changed their software engineering standard (2167a)
to an Evo standard (MIL-STD-498, which derived succeeding public standards (for
example, IEEE)). The reports (op. cit.) and my own experience, is that Evo results in
a remarkable ability to delivery on time and to budget, or better, compared to conven-
tional project management methods [16].

An Evo project is consciously divided up into small, early and frequently deliv-
ered, stakeholder result-focussed steps. Each step delivers benefit and build towards
satisfaction of final requirements. Step size is typically weekly or 2% of total time or
budget. This results in excellent regular and realistic feedback about the team’s ability
to deliver meaningful measurable results to selected stakeholders. The feedback in-
cludes information on design suitability, stakeholders’ reaction, requirements’ trade-
offs, cost estimation, time estimation, people resource estimation, and development
process aspects.

Statistical Process Control [originated Shewhart, Deming, Juran: from 1920’s] Sta-
tistical Process Control (SPC) although widely used in manufacturing [4] is only to a
limited degree actually used in software work. Some use is found in advanced In-
spections [5],[18]. The Plan Do Study (or Check) Act cycle is widely appreciated as a
fundamental feedback mechanism.

Principle 2: Identify Critical Measures

It is true of any system, that there are several factors, which can cause a system to die.
It is true of your body, your organization, your project and your software or service
product. Managers call them ‘Critical Success Factors.” If you analyzed systems
looking for all the critical factors, which caused shortfalls or failures, you would get a
list of factors needing better control. They would include both stakeholder values
(such as serviceability, reliability, adaptability, portability and usability) and the criti-
cal resources needed to deliver those values (such as people, time, money and data
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quality). You would find, for each of these critical factors, a series of faults, which
would include:

e failure to systematically identify all critical stakeholders and their critical needs

e failure to define the factor measurably. Typically, only buzzwords are used and no

indication is given of the survival failure) and target (success) measures

failure to define a practical way to measure the factor

failure to contract measurably for the critical factor

failure to design towards reaching the factor’s critical levels

failure to make the entire project team aware of the numeric levels needed for the

critical factors

o failure to maintain critical levels of performance during peak loads or on system
growth.

Our entire culture and literature of ‘software requirements’ systematically fails to
account for the majority of critical factors. Usually, only a handful, such as perform-
ance, financial budget and deadline dates are specified. Most quality factors are not
defined quantitatively at all. In practice, all critical measures should always be de-
fined with a useful scale of measure. However, people are not trained to do this and
managers are no exception. The result is that our ability to define critical ‘breakdown’
levels of performance and to manage successful delivery is destroyed from the outset.

Principle 3: Control Multiple Objectives

You do not have the luxury of managing qualities and costs at whim. You cannot de-
cide for a software project to manage just a few of the critical factors, and avoid
dealing with the others. You have to deal with a/l the potential threats to your project,
organization or system. You must simultaneously track and manage all the critical
factors. If not, then the ‘forgotten factors’ will probably be the very reasons for proj-
ect or system failure.

I have developed the Impact Estimation (IE) method to enable tracking of critical
factors, but it does rely on critical objectives and quantitative goals having been iden-
tified and specified. Given that most software engineers have not yet learned to spec-
ify all their critical factors quantitatively (Principle 2), this next step, tracking prog-
ress against quantitative goals (this principle), is usually impossible.

IE is conceptually similar to Quality Function Deployment [1], but it is much more
objective and numeric. It gives a picture of reality that can be monitored [8], [10]. See
Table 1, an example of an IE table. It is beyond the scope of this paper to provide all
the underlying detail for IE. To give a brief outline, the percentage (%) estimates (see
Table 1) are based, as far as possible, on source-quoted, credibility evaluated, objec-
tive documented evidence. IE can be used to evaluate ideas before their application,
and it can also be used (as in Table 1) to track progress towards multiple objectives
during an Evolutionary project. In Table 1, the ‘Actual’ and ‘Difference” and ‘Total’
numbers represent feedback in small steps for the chosen set of critical factors that
management has decided to monitor. If the project is deviating from plans, this will be
easily visible and can be corrected on the next step.



