L.ecture Notes in

Computer Science 1943

Floor Koornneef
Meine van der Meulen (Eds.)

Computer Safety,
Reliability and Security

19th International Conference, SAFECOMP 2000
Rotterdam, The Netherlands, October 2000
Proceedings

€) Springer

Floor Koornneef Meine van der Meulen (Eds.)

Computer Safety,
Reliability and Security

19th International Conference, SAFECOMP 2000
Rotterdam, The Netherlands, October 24-27, 2000
Proceedings

€)) Springer

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editors

Floor Koornneef

TU Delft, Safety Science Group

Jaffalaan 5, 2628 BX Delft, The Netherlands

E-mail: f.koornneef @tbm.tudelft.nl

Meine van der Meulen

SIMTECH

Max Euwelaan 60, 3062 MA Rotterdam, The Netherlands
E-mail: m.van.der.meulen @simtech.nl

Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Computer safety, reliability and security : 19th international
conference ; proceedings / SAFECOMP 2000, Rotterdam, The Netherlands,
October 24 - 27, 2000. Floor Koornneef ; Meine van der Meulen (ed.). -
Berlin ; Heidelberg ; New York ; Barcelona ; Hong Kong ; London ;
Milan ; Paris ; Singapore ; Tokyo : Springer, 2000

(Lecture notes in computer science ; Vol. 1943)

ISBN 3-540-41186-0

CR Subject Classification (1998): D.1-4, E.4, C.3, 3, K.6.5

ISSN 0302-9743
ISBN 3-540-41186-0 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are

liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg New York

a member of BertelsmannSpringer Science+Business Media GmbH
© Springer-Verlag Berlin Heidelberg 2000

Printed in Germany

Typesetting: Camera-ready by author, data conversion by DA-TeX Gerd Blumenstein
Printed on acid-free paper SPIN: 10780880 06/3142 543210

Lecture Notes in Computer Science 1943
Edited by G. Goos, J. Hartmanis and J. van Leeuwen

Springer
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Singapore
Tokyo

Preface

Welcome to Rotterdam and to the International Conference Safecomp 2000, on
the reliability, safety and security of critical computer applications. This already
marks the 19th year of the conference, showing the undiminished interest the
topic elicits from both academia and industry. Safecomp has proven to be an
excellent place to meet and have discussions, and we hope this trend continues
this year.

People and organisations depend more and more on the functioning of com-
puters. Whether in household equipment, telecommunication systems, office ap-
plications, banking, people movers, process control or medical systems, the often-
embedded computer subsystems are meant to let the hosting system realise its
intended functions. The assurance of proper functioning of computers in de-
pendable applications is far from obvious. The millennium started with the bug
and the full endorsement of the framework standard IEC 61508. The variety
of dependable computer applications increases daily, and so does the variety of
risks related to these applications. The assessment of these risks therefore needs
reflection and possibly new approaches. This year’s Safecomp provides a broad
mix of papers on these issues, on progress made in different application domains
and on emerging challenges.

One of the special topics this year is transport and infrastructure. One would
be hard pressed to find a better place to discuss this than in Rotterdam. The
reliability, safety and security of computers is of prominent importance to Rotter-
dam, as a few examples illustrate. Its harbour depends on the reliable functioning
of container handling systems, on the safe functioning of its radar systems, and,
as of recently, on the safe and reliable functioning of the enormous storm surge
barrier at Hoek van Holland.

A new topic for Safecomp is medical systems. These progressively depend
on — embedded — programmable electronic systems. Experience shows that the
medical world lacks the methods for applying these systems safely and reliably.
We welcome a group of people ready to discuss this topic, and hope, by doing
so, to contribute to this field of applications of safe, reliable and secure systems.

Software process improvement also represents a special topic of Safecomp
2000. It proved to be the most fruitful of the three in terms of submitted papers.
There were many contributions from a host of countries, which had to be spread
amongst different session topics.

We wish to thank the International Program Committee’s members, 41 in
total, for their efforts in reviewing the papers and for their valuable advice in
organising this conference. We are also grateful for their contribution to dis-
tributing calls for papers and announcements. Without their help the burden of
organising this conference would have been much greater.

VI Preface

Finally, let us once again welcome you to Rotterdam, a truly international
city and home to people of many nationalities. We hope you take the time not
only to enjoy this conference, but also to find your way around the city, since it
surely has much to offer.

Floor Koornneef
Meine van der Meulen

Lecture Notes in Computer Science

For information about Vols. 1-1872

please contact your bookseller or Springer-Verlag

Vol. 1873: M. Ibrahim, J. Kiing, N. Revell (Eds.), Data-
base and Expert Systems Applications. Proceedings, 2000.
XIX, 1005 pages. 2000.

Vol. 1874: Y. Kambayashi, M. Mohania, A M. Tjoa (Eds.),
Data Warehousing and Knowledge Discovery. Proceed-
ings, 2000. XII, 438 pages. 2000.

Vol. 1875: K. Bauknecht, S.K. Madria, G. Pernul (Eds.),

Electronic Commerce and Web Technologies. Proceed-
ings, 2000. XII, 488 pages. 2000.

Vol. 1876: F. J. Ferri, J.M. Iiesta, A. Amin, P. Pudil
(Eds.), Advances in Pattern Recognition. Proceedings,
2000. XVIII, 901 pages. 2000.

Vol. 1877: C. Palamidessi (Ed.), CONCUR 2000 -
Concurrency Theory. Proceedings, 2000. XI, 612 pages.
2000.

Vol. 1878: J.P. Bowen, S. Dunne, A. Galloway, S. King
(Eds.), ZB 2000: Formal Specification and Development
in Z and B. Proceedings, 2000. XIV, 511 pages. 2000.

Vol. 1879: M. Paterson (Ed.), Algorithms — ESA 2000.
Proceedings, 2000. IX, 450 pages. 2000.

Vol. 1880: M. Bellare (Ed.), Advances in Cryptology —
CRYPTO 2000. Proceedings, 2000. X1, 545 pages. 2000.

Vol. 1881: C. Zhang, V.-W. Soo (Eds.), Design and Ap-
plications of Intelligent Agents. Proceedings, 2000. X,
183 pages. 2000. (Subseries LNAI).

Vol. 1882: D. Kotz, F. Mattern (Eds.), Agent Systems,
Mobile Agents, and Applications. Proceedings, 2000. XII,
275 pages. 2000.

Vol. 1883: B. Triggs, A. Zisserman, R. Szeliski (Eds.),
Vision Algorithms: Theory and Practice. Proceedings,
1999. X, 383 pages. 2000.

Vol. 1884: J. Stuller, J. Pokorny, B. Thalheim, Y.
Masunaga (Eds.), Current Issues in Databases and Infor-
mation Systems. Proceedings, 2000. XIII, 396 pages.
2000.

Vol. 1885: K. Havelund, J. Penix, W. Visser (Eds.), SPIN
Model Checking and Software Verification. Proceedings,
2000. X, 343 pages. 2000.

Vol. 1886: R. Mizoguchi, J. Slaney /Eds.), PRICAI 2000:
Topics in Artificial Intelligence. Proceedings, 2000. XX,
835 pages. 2000. (Subseries LNAI).

Vol. 1888: G. Sommer, Y.Y. Zeevi (Eds.), Algebraic
Frames for the Perception-Action Cycle. Proceedings,
2000. X, 349 pages. 2000.

Vol. 1889: M. Anderson, P. Cheng, V. Haarslev (Eds.),
Theory and Application of Diagrams. Proceedings, 2000.
XII, 504 pages. 2000. (Subseries LNAI).

Vol. 1890: C Linnhoff-Popien, H.-G. Hegering (Eds.),
Trends in Distributed Systems: Towards a Universal Serv-
ice Market. Proceedings, 2000. XI, 341 pages. 2000.

Vol. 1891: A.L. Oliveira (Ed.), Grammatical Inference:
Algorithms and Applications. Proceedings, 2000. VIII,
313 pages. 2000. (Subseries LNAI).

Vol. 1892: P. Brusilovsky, O. Stock, C. Strapparava
(Eds.), Adaptive Hypermedia and Adaptive Web-Based
Systems. Proceedings, 2000. XIII, 422 pages. 2000.

Vol. 1893: M. Nielsen, B. Rovan (Eds.), Mathematical
Foundations of Computer Science 2000. Proceedings,
2000. XIII, 710 pages. 2000.

Vol. 1894: R. Dechter (Ed.), Principles and Practice of
Constraint Programming — CP 2000. Proceedings, 2000.
XII, 556 pages. 2000.

Vol. 1895: F. Cuppens, Y. Deswarte, D. Gollmann, M.
Waidner (Eds.), Computer Security — ESORICS 2000.
Proceedings, 2000. X, 325 pages. 2000.

Vol. 1896: R. W. Hartenstein, H. Griinbacher (Eds.),
Field-Programmable Logic and Applications. Proceed-
ings, 2000. XVII, 856 pages. 2000.

Vol. 1897: J. Gutknecht, W. Weck (Eds.), Modular Pro-
gramming Languages. Proceedings, 2000. XII, 299 pages.
2000.

Vol. 1898: E. Blanzieri, L. Portinale (Eds.), Advances in
Case-Based Reasoning. Proceedings, 2000. XII, 530
pages. 2000. (Subseries LNAI).

Vol. 1899: H.-H. Nagel, F.J. Perales Lépez (Eds.), Ar-
ticulated Motion and Deformable Objects. Proceedings,
2000. X, 183 pages. 2000.

Vol. 1900: A. Bode, T. Ludwig, W. Karl, R. Wismiiller
(Eds.), Euro-Par 2000 Parallel Processing. Proceedings,
2000. XXXV, 1368 pages. 2000.

Vol. 1901: O. Etzion, P. Scheuermann (Eds.), Coopera-
tive Information Systems. Proceedings, 2000. XI, 336
pages. 2000.

Vol. 1902: P. Sojka, I. Kopecek, K. Pala (Eds.), Text,
Speech and Dialogue. Proceedings, 2000. X111, 463 pages.
2000. (Subseries LNAI).

Vol. 1903: S. Reich, K.M. Anderson (Eds.), Open
Hypermedia Systems and Structural Computing. Proceed-
ings, 2000. VIII, 187 pages. 2000.

Vol. 1904: S.A. Cerri, D. Dochev (Eds.), Artificial Intel-
ligence: Methodology, Systems, and Applications. Pro-
ceedings, 2000. XII, 366 pages. 2000. (Subseries LNAI).

Vol. 1905: H. Scholten, M.J. van Sinderen (Eds.), Inter-
active Distributed Multimedia Systems and Telecommu-
nication Services. Proceedings, 2000. XI, 306 pages.
2000.

Vol. 1906: A. Porto, G.-C. Roman (Eds.), Coordination
Languages and Models. Proceedings, 2000. IX, 353 pages.
2000.

Vol. 1907: H. Debar, L. Mé, S.F. Wu (Eds.), Recent
Advances in Intrusion Detection. Proceedings, 2000. X,
227 pages. 2000.

Vol. 1908: J. Dongarra, P. Kacsuk, N. Podhorszki (Eds.),
Recent Advances in Parallel Virtual Machine and Mes-
sage Passing Interface. Proceedings, 2000. XV, 364 pages.
2000.

Vol. 1909: T. Yakhno (Ed.), Advances in Information
Systems. Proceedings, 2000. XVI, 460 pages. 2000.

Vol. 1910: D.A. Zighed, J. Komorowski, J. Zytkow (Eds.),
Principles of Data Mining and Knowledge Discovery.
Proceedings, 2000. XV, 701 pages. 2000. (Subseries
LNAI).

Vol. 1911: D.G. Feitelson, L. Rudolph (Eds.), Job Sched-
uling Strategies for Parallel Processing. VII, 209 pages.
2000.

Vol. 1912: Y. Gurevich, P.W. Kutter, M. Odersky, L.
Thiele (Eds.), Abstract State Machines. Proceedings,
2000. X, 381 pages. 2000.

Vol. 1913: K. Jansen, S. Khuller (Eds.), Approximation
Algorithms for Combinatorial Optimization. Proceedings,
2000. X, 275 pages. 2000.

Vol. 1914: M. Herlihy (Ed.), Distributed Computing. Pro-
ceedings, 2000. VIII, 389 pages. 2000.

Vol. 1915: S. Dwarkadas (Ed.), Languages, Compilers,
and Run-Time Systems for Scalable Computers. Proceed-
ings, 2000. VIII, 301 pages. 2000.

Vol. 1916: F. Dignum, M. Greaves (Eds.), Issues in Agent
Communication. X, 351 pages. 2000. (Subseries LNAI).

Vol. 1917: M. Schoenauer, K. Deb, G. Rudolph, X. Yao,
E. Lutton, J.J. Merelo, H.-P. Schwefel (Eds.), Parallel
Problem Solving from Nature — PPSN VI. Proceedings,
2000. XXI, 914 pages. 2000.

Vol. 1918: D. Soudris, P. Pirsch, E. Barke (Eds.), Inte-
grated Circuit Design. Proceedings, 2000. XIT, 338 pages.
2000.

Vol. 1919: M. Ojeda-Aciego, I.P. de Guzman, G. Brewka,
L. Moniz Pereira (Eds.), Logics in Artificial Intelligence.
Proceedings, 2000. XI, 407 pages. 2000. (Subseries
LNAI).

Vol. 1920: A.H.F. Laender, S.W. Liddle, V.C. Storey
(Eds.), Conceptual Modeling — ER 2000. Proceedings,
2000. XV, 588 pages. 2000.

Vol. 1921: S.W. Liddle, H.C. Mayr, B. Thalheim (Eds.),
Conceptual Modeling for E-Business and the Web. Pro-
ceedings, 2000. X, 179 pages. 2000.

Vol. 1922: J. Crowcroft, J. Roberts, M.I. Smirnov (Eds.),
Quality of Future Internet Services. Proceedings, 2000.
X1, 368 pages. 2000.

Vol. 1923: J. Borbinha, T. Baker (Eds.), Research and
Advanced Technology for Digital Libraries. Proceedings,
2000. XVII, 513 pages. 2000.

Vol. 1924: W. Taha (Ed.), Semantics, Applications, and
Implementation of Program Generation. Proceedings,
2000. VIII, 231 pages. 2000.

Vol. 1925: J. Cussens, S. DZeroski (Eds.), Learning Lan-
guage in Logic. X, 301 pages 2000. (Subseries LNAI).
Vol. 1926: M. Joseph (Ed.), Formal Techniques in Real-
Time and Fault-Tolerant Systems. Proceedings, 2000. X,
305 pages. 2000.

Vol. 1927: P. Thomas, H.W. Gellersen, (Eds.), Handheld
and Ubiquitous Computing. Proceedings, 2000. X, 249
pages. 2000.

Vol. 1928: U. Brandes, D. Wagner (Eds.), Graph-Theo-
retic Concepts in Computer Science. Proceedings, 2000.
X, 315 pages. 2000.

Vol. 1929: R. Laurini (Ed.), Advances in Visual Informa-
tion Systems. Proceedings, 2000. XII, 542 pages. 2000.

Vol. 1931: E. Horlait (Ed.), Mobile Agents for Telecom-
munication Applications. Proceedings, 2000. IX, 271
pages. 2000.

Vol. 1658: J. Baumann, Mobile Agents: Control Algo-
rithms. XIX, 161 pages. 2000.

Vol. 1766: M. Jazayeri, R.G.K. Loos, D.R. Musser (Eds.),
Generic Programming. Proceedings, 1998. X, 269 pages.
2000.

Vol. 1791: D. Fensel, Problem-Solving Methods. XII, 153
pages. 2000. (Subseries LNAI).

Vol. 1799: K. Czarnecki, U.W. Eisenecker, Generative
and Component-Based Software Engineering. Proceed-
ings, 1999. VIII, 225 pages. 2000.

Vol. 1812: J. Wyatt, J. Demiris (Eds.), Advances in Ro-
bot Learning. Proceedings, 1999. VII, 165 pages. 2000.
(Subseries LNAI).

Vol. 1932: Z.W. Ra$, S. Ohsuga (Eds.), Foundations of
Intelligent Systems. Proceedings, 2000. XII, 646 pages.
(Subseries LNAI).

Vol. 1933: R.W. Brause, E. Hanisch (Eds.), Medical Data
Analysis. Proceedings, 2000. XI, 316 pages. 2000.

Vol. 1934:].S. White (Ed.), Envisioning Machine Trans-
lation in the Information Future. Proceedings, 2000. XV,
254 pages. 2000. (Subseries LNAI).

Vol. 1935: S.L. Delp, A.M. DiGioia, B. Jaramaz (Eds.),
Medical Image Computing and Computer-Assisted Inter-
vention - MICCAI 2000. Proceedings, 2000. XXV, 1250
pages. 2000.

Vol. 1937: R. Dieng, O. Corby (Eds.), Knowledge Engi-
neering and Knowledge Management. Proceedings, 2000.
XIII, 457 pages. 2000. (Subseries LNAI).

Vol. 1938: S. Rao, K.I. Sletta (Eds.), Next Generation
Networks. Proceedings, 2000. XI, 392 pages. 2000.

Vol. 1939: A. Evans, S. Kent, B. Selic (Eds.), «<UML» —
The Unified Modeling Language. Proceedings, 2000. X1V,
572 pages. 2000.

Vol. 1940: M. Valero, K. Joe, M. Kitsuregawa, H. Tanaka
(Eds.), High Performance Computing. Proceedings, 2000.
XV, 595 pages. 2000.

Vol. 1942: H. Yasuda (Ed.), Active Networks. Proceed-
ings, 2000. XI, 424 pages. 2000.

Vol. 1943: F. Koornneef, M. van der Meulen (Eds.), Com-
puter Safety, Reliability and Security. Proceedings, 2000.
X, 432 pages. 2000.

Vol. 1945: W. Grieskamp, T. Santen, B. Stoddart (Eds.),
Integrated Formal Methods. Proceedings, 2000. ¥ 441
pages. 2000.

Vol. 1948: T. Tan, Y. Shi, W. Gao (Eds.), Advance =
Multimodal Interfaces — ICMI 2000. Proceedings. © 0.
XVI, 678 pages. 2000.

Vol. 1954: W.A. Hunt, Jr., S.D. Johnson (Eds.), Formal
Methods in Computer-Aided Design. Proceedings, 2000.
X1, 539 pages. 2000.

Table of Contents

Invited Paper

The Ten Most Powerful Principles for Quality in (Software and)
Software Organizations for Dependable Systemsc.coovveninnn... 1
Tom Gilb

Verification and Validation

Empirical Assessment of Software On-Line Diagnostics

Using Fault Injectionouiiiiiiitiiii it 14
John Napier, John May and Gordon Hughes
Speeding-Up Fault Injection Campaigns in VHDL Models 27

B. Parrotta, M. Rebaudengo, M. Sonza Reorda and M. Violante

Specification and Verification of a Safety Shell with Statecharts and

Extended Timed Graphscoouiiiiiiiiii i 37
Jan van Katwigk, Hans Toetenel, Abd-El-Kader Sahraoui, Eric Anderson

and Janusz Zalewsks

Validation of Control System Specifications with Abstract Plant Models53
Wenhui Zhang

A Constant Perturbation Method for Evaluation

of Structural Diversity in Multiversion Softwarecovuvnn 63
Luping Chen, John May and Gordon Hughes
Expert Error: The Case of Trouble-Shooting in Electronics 74

Denis Besnard

The Safety Management of Data-Driven Safety-Related Systems 86
A. G. Faulkner, P. A. Bennett, R. H. Pierce, I. H. A. Johnston
and N. Storey

Software Support for Incident Reporting Systems
in Safety-Critical Applicationsc.iuiiriiiiriiiiiiiiiinninns 96
Chris Johnson

Software Process Improvement

A Dependability-Explicit Model for the Development
of Computing SyStEmMScuiuiuiiii i 107
Mohamed Kadniche, Jean-Claude Laprie and Jean-Paul Blanquart

VIII Table of Contents

Deriving Quantified Safety Requirements in Complex Systems 117
Peter A. Lindsay, John A. McDermid and David J. Tombs

Improving Software Development by Using

Safe Object Oriented Development: OTCDccciiiiiiinn... 131
Xavier Méhaut and Pierre Morére

A Safety Licensable PES for SIL 4 Applicationsc...... 141
Wolfgang A. Halang, Peter Vogrin and Matjaz Colnarié

Safety and Security Issues in Electric Power Industry 151
Zdzistaw Zurakowski

Dependability of Computer Control Systems in Power Plants 165
Cldudia Almeida, Alberto Arazo, Yves Crouzet and Karama Kanoun

A Method of Analysis of Fault Trees with Time Dependencies 176

Jan Magott and Pawet Skrobanek

Formal Methods

A Formal Methods Case Study: Using Light-Weight VDM

for the Development of a Security System Module 187
Georg Droschl, Walter Kuhn, Gerald Sonneck and Michael Thuswald
Formal Methods: The Problem Is Education 198

Thierry Scheurer

Formal Methods Diffusion: Past Lessons and Future Prospects 211
R. Bloomfield, D. Craigen, F. Koob, M. Ullmann and S. Wittmann

Invited Paper

Safe Tech: A Control Oriented Viewpointccooviiiiiniiinin.... 227
Maarten Steinbuch

Safety Guidelines, Standards and Certification

Derivation of Safety Targets for the Random Failure
of Programmable Vehicle Based Systemscoooiiiiin... 240
Richard Fvans and Jonathan Moffett

IEC 61508 — A Suitable Basis for the Certification

Derek Fowler and Phil Bennett

Table of Contents IX
Hardware Aspects

An Approach to Software Assisted Recovery
from Hardware Transient Faults for Real Time Systems 264
D. Basu and R. Paramasivam

Programmable Electronic System Design & Verification Utilizing DFM275
Michel Houtermans, George Apostolakis, Aarnout Brombacher
and Dimitrios Karydas

SIMATIC S7-400F /FH: Safety-Related Programmable Logic Controller ... 286
Andreas Schenk

Safety Assessment I

Assessment of the Reliability of Fault-Tolerant Software:
A. Bayesian: APPIOACH. s cwe v s sws sims wme s miws s srarst s 88 wim s siars siss 4578 € 0w ¥ 919 8 9% 294
Bev Littlewood, Peter Popov and Lorenzo Strigini

Estimating Dependability of Programmable Systems Using BBNs 309
Bjgrn Azel Gran, Gustav Dahll, Siegfried Fisinger, Eivind J. Lund,
Jan Gerhard Norstrgm, Peter Strocka and Britt J. Ystanes

Design for Safety

Improvements in Process Control Dependability

through Internet Security Technologyccoiiiiiiiiiiiiiiiinna... 321
Ferdinand J. Dafelmair
A Survey on Safety-Critical Multicast Networking 333

James S. Pascoe and R. J. Loader

Invited Paper

Causal Reasoning about Aircraft Accidentsc.covviiiien... 344
Peter B. Ladkin

Transport & Infrastructure

Controlling Requirements Evolution: An Avionics Case Study 361
Stuart Anderson and Massimo Felici

HAZOP Analysis of Formal Models
of Safety-Critical Interactive Systemscccoiiiiiiiiiininan... 371
Andrew Hussey

X Table of Contents

Failure Mode and Effect Analysis for Safety-Critical Systems
with Software Componentsccveiiiiiiiiiriieeieaneneenennanss 382
Tadeusz Cichocki and Janusz Gdrski

Safety Assessment II

Risk Ordering of States in Safechartscccoviviiiiiiiiinn., 395
Nimal Nissanke and Hamdan Dammag

Dependability Evaluation: Model and Method Based on Activity Theory ..406
Mark-Alexander Sujan, Antonio Rizzo and Alberto Pasquini

Forensic Software Engineering and the Need
for New Approaches to Accident Investigation 420
Chris Johnson

Author Index ... 431

The Ten Most Powerful Principles for Quality in
(Software and) Software Organizations for Dependable
Systems

Tom Gilb

Result Planning Limited,

Iver Holtersvei 2, N-1410 Kolbotn, Norway
Phone: +(47) 66 80 46 88, Mobile: +(47) 926 67187
Gilb@acm.org
http://www.Result-Planning.com,

Abstract. Software knows it has a problem. Solutions abound, but
which solutions work? What are the most fundamental underlying prin-
ciples we can observe in successful projects? This paper presents 10
powerful principles that are not widely taught or appreciated. They are
based on ideas of measurement, quantification and feedback. Our ma-
turity level with respect to 'numbers' is known to be poor. Hopefully, as
we move to higher maturity levels we will also begin to appreciate the
power of measurement and numeric expression of idea. What can we do
right now? I suggest the first step is to recognize that all your quality
requirements can and should be specified numerically. I am not talking
about 'counting bugs'. I am talking about quantifying qualities such as
security, portability, adaptability, maintainability, robustness, usability,
reliability and performance. Decide to make them numeric on your
project. Draft some numeric requirements today, surprise your team
tomorrow!

1 Introduction

All projects have some degree of failure, compared to initial plans and promises. Far
too many software projects fail totally. In the mid 1990s, the US Department of De-
fense estimated that about half of their software projects were total failures! (Source:
N Brown). The civil sector is no better [16]. So what can be done to improve project
success? This paper outlines ten key principles of successful software development
methods, which characterize best practice.

These 10 most powerful software quality principles are selected because there is
practical experience showing that they really get us control over qualities, and over
the costs of qualities. They have a real track record. This record often spans decades
of practice in companies like IBM, HP and Raytheon. There is nothing ‘'new' about
them. They are classic. But the majority of our community is young and experientially

F. Koornneef and M. van der Meulen (Eds.): SAFECOMP 2000, LNCS 1943, pp. 1-13, 2000.
© Springer-Verlag Berlin Heidelberg 2000

2 Tom Gilb

new to the game, so my job is to remind us of the things that work well. Your job is to
evaluate this information and start getting the improvements your management wants
in terms of quality and the time and effort needed to get it.

"Those who do not learn from history, are doomed to repeat it" (Santayana, 1903,
The Life of Reason).

Principle 1: Use Feedback

Experience of formal feedback methods is decades old, and many do appreciate their
power. However, far too many software engineers and their managers are still prac-
ticing low-feedback methods, such as Waterfall project management (also known as
Big Bang, Grand Design). Far too many also are checking the quality of their systems
by relying on testing, ‘late in the day’, when they have finished producing their entire
system. Even many textbooks and courses continue to present low-feedback methods.
This is not from conscious rejection of high-feedback methods, but from ignorance of
the many successful and well-documented projects, which have detailed the value of
feedback.

Methods using feedback succeed; those without seem to fail. ‘Feedback’ is the sin-
gle most powerful principle for software engineering. (Most of the other principles in
this paper are really ideas, which support the use of feedback.) Feedback helps you
get better control of your project by providing facts about how things are working in
practice. Of course, the presumption is that the feedback is early enough to do some
good. This is the crux: rapid feedback. We have to have the project time to make use
of the feedback (for example, to radically change direction, if that is necessary). Some
of the most notable rapid high-feedback methods include:

Defect Prevention Process (originated Mays and Jones, IBM 1983) The Defect Pre-
vention Process (DPP) equates to Software Engineering Institute CMM Level 5 as
practiced at IBM from 1983-1985 and on [14]. DPP is a successful way to remove the
root causes of defects. In the short term (a year) about 50% defect reduction can be
expected; within 2-3 years, 70% reduction (compared to original level) can be experi-
enced and over a 5-8 year timeframe, 95% defect reduction is possible (Sources: IBM
Experience, Raytheon Experience [5]).

The key feedback idea is to ‘decentralize’ the initial causal analysis activity inves-
tigating defects to the grass roots programmers and analysts. This gives you the true
causes and acceptable, realistic change suggestions. Deeper ‘cause analysis’ and
‘measured process-correction’ work can then be undertaken outside of deadline-
driven projects by the more specialized and centralized Process Improvement Teams.

The feedback mechanisms are many. For example, same-day feedback is obtained
from the people working with the specification and, early numeric process change-
result feedback is obtained from the Process Improvement Teams.

Inspection (originated Fagan, IBM 1975) The Inspection method originated in IBM
in work carried out by M. Fagan, H. Mills (‘Cleanroom’) and R. Radice (CMM in-
ventor). It was originally primarily focussed on bug removal in code and code design

The Ten Most Powerful Principles for Quality in Software Organizations 3

documents. Many continue to use it in this way today. However, Inspection has
changed character in recent years. Today, it can be used more cost-effectively by fo-
cussing on measuring the Major defect level (software standards violations) in sample
areas (rather than processing the entire document) of any software or upstream mar-
keting specifications [9]. The defect level measurement should be used to decide
whether the entire specification is fit for release (exit) downstream to be used, say for
a ‘go/no-go’ decision-making review or for further refinement (test planning, design,
coding).

The main Inspection feedback components are:

e feedback to author from colleagues regarding compliance with software standards.
e feedback to author about required levels of standards compliance in order to con-
sider their work releasable.

Evolutionary Project Management (originated within ‘Cleanroom’ methods, Mills,
IBM 1970) Evolutionary Project Management (Evo) has been successfully used on
the most demanding space and military projects since 1970 [15], [13], [2], [8], [10].
The US Department of Defense changed their software engineering standard (2167a)
to an Evo standard (MIL-STD-498, which derived succeeding public standards (for
example, IEEE)). The reports (op. cit.) and my own experience, is that Evo results in
a remarkable ability to delivery on time and to budget, or better, compared to conven-
tional project management methods [16].

An Evo project is consciously divided up into small, early and frequently deliv-
ered, stakeholder result-focussed steps. Each step delivers benefit and build towards
satisfaction of final requirements. Step size is typically weekly or 2% of total time or
budget. This results in excellent regular and realistic feedback about the team’s ability
to deliver meaningful measurable results to selected stakeholders. The feedback in-
cludes information on design suitability, stakeholders’ reaction, requirements’ trade-
offs, cost estimation, time estimation, people resource estimation, and development
process aspects.

Statistical Process Control [originated Shewhart, Deming, Juran: from 1920’s] Sta-
tistical Process Control (SPC) although widely used in manufacturing [4] is only to a
limited degree actually used in software work. Some use is found in advanced In-
spections [5],[18]. The Plan Do Study (or Check) Act cycle is widely appreciated as a
fundamental feedback mechanism.

Principle 2: Identify Critical Measures

It is true of any system, that there are several factors, which can cause a system to die.
It is true of your body, your organization, your project and your software or service
product. Managers call them ‘Critical Success Factors.” If you analyzed systems
looking for all the critical factors, which caused shortfalls or failures, you would get a
list of factors needing better control. They would include both stakeholder values
(such as serviceability, reliability, adaptability, portability and usability) and the criti-
cal resources needed to deliver those values (such as people, time, money and data

4 Tom Gilb

quality). You would find, for each of these critical factors, a series of faults, which
would include:

e failure to systematically identify all critical stakeholders and their critical needs

e failure to define the factor measurably. Typically, only buzzwords are used and no

indication is given of the survival failure) and target (success) measures

failure to define a practical way to measure the factor

failure to contract measurably for the critical factor

failure to design towards reaching the factor’s critical levels

failure to make the entire project team aware of the numeric levels needed for the

critical factors

o failure to maintain critical levels of performance during peak loads or on system
growth.

Our entire culture and literature of ‘software requirements’ systematically fails to
account for the majority of critical factors. Usually, only a handful, such as perform-
ance, financial budget and deadline dates are specified. Most quality factors are not
defined quantitatively at all. In practice, all critical measures should always be de-
fined with a useful scale of measure. However, people are not trained to do this and
managers are no exception. The result is that our ability to define critical ‘breakdown’
levels of performance and to manage successful delivery is destroyed from the outset.

Principle 3: Control Multiple Objectives

You do not have the luxury of managing qualities and costs at whim. You cannot de-
cide for a software project to manage just a few of the critical factors, and avoid
dealing with the others. You have to deal with a/l the potential threats to your project,
organization or system. You must simultaneously track and manage all the critical
factors. If not, then the ‘forgotten factors’ will probably be the very reasons for proj-
ect or system failure.

I have developed the Impact Estimation (IE) method to enable tracking of critical
factors, but it does rely on critical objectives and quantitative goals having been iden-
tified and specified. Given that most software engineers have not yet learned to spec-
ify all their critical factors quantitatively (Principle 2), this next step, tracking prog-
ress against quantitative goals (this principle), is usually impossible.

IE is conceptually similar to Quality Function Deployment [1], but it is much more
objective and numeric. It gives a picture of reality that can be monitored [8], [10]. See
Table 1, an example of an IE table. It is beyond the scope of this paper to provide all
the underlying detail for IE. To give a brief outline, the percentage (%) estimates (see
Table 1) are based, as far as possible, on source-quoted, credibility evaluated, objec-
tive documented evidence. IE can be used to evaluate ideas before their application,
and it can also be used (as in Table 1) to track progress towards multiple objectives
during an Evolutionary project. In Table 1, the ‘Actual’ and ‘Difference” and ‘Total’
numbers represent feedback in small steps for the chosen set of critical factors that
management has decided to monitor. If the project is deviating from plans, this will be
easily visible and can be corrected on the next step.

