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Preface

In these days of the explosive expansion of physics, the era of
excitement in a particular branch of research sometimes spans only
a few years. It is remarkable that new discoveries are still being made
and papers are still being written on a topic as old as lattice vibrations,
the field which started modern solid state physics. We wish to celebrate
its 50th anniversary, the anniversary of the basic papers of Debye (1)
(1912) and Born and von Karman (1a) (1912), by issuing this status
report.

Fifty years ago, twenty years ago, and even ten years ago one.
investigated detailed properties of lattice vibrations for the sole
purpose of understanding the basis for the macroscopic behavior of
crystals. It has only been in the past few years that experimental
techniques have become powerful enough so that one can essentially
live among the vibrating atoms and observe their detailed motions.
Refinements in X-ray techniques and the introduction of slow
neutron scattering facilities have been very fruitful in this direction.
It also seems likely that the Méssbauer effect will provide an im-
portant tool for the investigations of lattice vibrations.

We begin our survey of the field with a discussion of the equations
of motion of a crystalline lattice and their relation to elastic properties
of the crystal. Then the frequency spectrum of perfect crystals is
analyzed as well as its role in the determination of thermodynamic
properties of the crystal. The effect of crystal imperfections and
disorder is presented. Localized vibrational modes are one con-
sequence of imperfections. Our story will end with an investigation
of correlations in the motions of pairs of atoms, both instantaneous
and time relaxed. The scattering of X-rays and neutrons by lattice
vibrations is directly connected to these correlations.

The aspects of phonon physics most actively investigated currently
involve the interaction of phonons with other degrees of freedom of a
crystal; for example, electrons in both normal metals and super-
conductors, spin waves in magnetic materials, etc. Although neither
these interaction problems nor the interaction of phonons through
anharmonicities are discussed in this book, we trust that some of our
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results can be applied to these problems. With this expansion of the
field one can expect the application of the old subject of lattice
vibrations to remain a topic for fruitful investigation for years to
come,

We would like to acknowledge the helpful discussions we have had
with Drs. P. A. Flinn, R. B. Potts, H. B. Rosenstock, and R. F. Wallis
in connection with various topics treated in this article.

' A. A. MARADUDIN
E. W. MonTROLL
G. H. Weiss

January, 1963
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l. Introduction

At every temperature, at the absolute zero as a result of zero-point
motion and at finite temperatures as a result of thermal fluctuations,
the atoms in a crystalline solid execute small oscillations about their
equilibrium positions. If the potential energy of the crystal is expanded
in powers of the amplitudes of these small oscillations and all terms
past those which are quadratic in the amplitudes are neglected, we have
what is known as the harmonic approximation to the potential energy.
This approximation is the basis for all of the discussion of the present
article.

The influence of these lattice vibrations on the thermedynamic
properties of solids (especially the heat capacity), and the reiation
between the macroscopic elastic properties of a crystal and the atomic
force constants which, together with the masses of the constituent
atoms, determine the scale of lattice vibrations at a given temperature,
have been the subjects of considerable study. The results of such
investigations have been summarized recently in the book by Born and
Huang (2) and in review articles by deLaunay (3), Blackman (3a),
and Leibfried (4).

The foregoing discussions can be described collectively as being
concerned with the atomic basis of the vibrational contributions to bulk
properties of crystals. In contrast, the present article is devoted largely
to a discussion of the influence of lattice vibrations on the local
behavior of individual atoms in a crystal and to the types of phenomena
which are influenced by local motions, although we cannot avoid some
discussion of bulk properties as well. The most direct measures of the
localized motions of a given atom are its position and momentum
distribution functions. Neighboring lattice defects might change the
vibration of a given atom while lattice vibrations give rise to an
interaction between defects and between defects and boundaries.

The width of lines or levels associated with various atomic, elec-
tronic, and nuclear processes in crystals depends on the localization
of motion of atoms in the crystal. One of the simplest types of pro-
cesses affected is the emission or absorption of a neutron by an atomic
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2 1. INTRODUCTION

nucleus. For example, a precise determination of the properties of
nuclear resonance levels by the capture of slow neutrons in a crystal is
made difficult by the fact that a Doppler broadening is induced by
lattice vibrations. The extent of this broadening depends on the
momentum distribution of atoms in the lattice (5).

Scattering or reflection of waves by a perfectly periodic lattice gives
rise to a sharp interference pattern when the wavelength of the
incident radiation is of the order of the lattice spacing. Random
variations in separation distance between members of atomic pairs lead
to more diffuse interference patterns and to the broadening of x-ray
lines (6). Impurity levels and band edges of electrons in semicon-
ductors could be expected to be broadened by thermal lattice motions.

The theory of the local character of lattice vibrations is somewhat
more difficult than that of thermodynamic quantities since the latter
depends only on average properties of the vibrations while the former
secks the vibrational properties of individual atoms or individual
normal modes. This means that in order to give a review of the field we
must be somewhat modest in our demands for quantitative results. We
will try to present our main physical ideas largely through the analysis
of special models of crystals which permit otherwise intractable
calculations to be carried out in a straightforward manner. The
qualitative generalization of our results to real crystals should be
clear. :

As in the discussion of bulk thermodynamic properties of solids we
will find that the vibrational frequency spectrum and the dispersion
relations between frequencies and wave vectors will play a central role
in our analyses. It is presumed that the reader has some familiarity
with the type of material Swhich is discussed, for example, in the
articles by deLaunay and Blackman. While it is our aim to avoid
duplication of material covered in these reviews, we begin (Chapter IT)
with a brief review of the basic theory of lattice dynamics which will be
utilized in the subsequent discussions in order to make the present
article reasonably self-contained. We then proceed to a discussion of
the theory of vibrational frequency spectra (Chapter III), and of
methods for determining the bulk thermodynamic properties of solids
which do not depend upon an explicit knowledge of the frequency
spectrum (Chapter IV). In Chapter V a theory of the effects of defects
and disorder on the vibrational properties of crystals is presented, and
in Chapter VI we discuss the consequences of imposing realistic
boundary conditions on the vibrational amplitudes of the atoms in a



1. INTRODUCTION 3

crystal. Finally, in Chapter VII the theory of the scattering of x-rays
and cold neutrons by lattice vibrations is presented from the point
of view of what experiments can tell us about the atomic force con-
stants and frequency spectra of solids, as well as what can be predicted
about the neutron differential scattering cross sections on the basis
of time-relaxed position correlation functions.

In all that follows we implicitly assume the separability of the
electronic and nuclear motions [the adiabatic hypothesis (7)]. Strictly
speaking, this assumption restricts us to nonmetallic crystals which are
in their ground states; however, in view of the successes of the
conventional theory of lattice dynamics when applied to metals, for
which this hypothesis certainly breaks down (8), we can be reasonably
confident in the qualitative correctness of our results even when
applied to metals. Consideration of the effect of the electron-phonon
interaction on the dynamics of metallic lattices falls outside the scope
of the present article.
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Il. Elements of the Theory of Lattice Dynamics

1. EQuaTioNs oF MOTION OF A VIBRATING LATTICE

It is particularly convenient to begin a discussion of the elements
of lattice dynamics with the assumption of an indefinitely extended
crystal since the resulting perfect lattice periodicity introduced by the
absence of bounding surfaces greatly simplifies the formulation of the
theory. This assumption, however, leads to infinite values for extensive
properties of the crystal. Their normalization to a finite volume by a
suitable choice of boundary conditions is discussed in the following
section.

We thus are led to consider a crystal composed of an infinite number
of unit cells, each of which is a parallelepiped bounded by three non-
coplanar vectors a,, a, a;. Each unit cell contains r atoms. We
denote the equilibrium position vector of the /th unit cell relative
" to an origin located at some atom by

x(1) = Ly + bty + hay @1.1)

where 1, T, I, are any three integers, positive, negative, or zero, which
we will refer to collectively as /. The vectors a,, a,, ag are called the
primitive translation vectors of the lattice. The locations of the 7 atoms
within the unit cell are given by the vectors x(«), where « distinguishes
the different atoms in the unit cell and takes the values 0, 1, ..., r-1. For
convenience we choose the origin of coordinates in such a way that
x(x = 0) = 0. Thus, in general the position vector of the «th atom
in the /th unit cell is given by

x(x) = x(I) + x(x). (21.2)

As a result of thermal fluctuations each atom is displaced from its
equilibrium position by an amount u(}). The total kinetic energy of
the lattice becomes

T = }2, M a0 (2.1.3)

(NN 3
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6 II. ELEMENTS OF THEORY OF LATTICE DYNAMICS

where M, is the mass of the «th kind of atom, and u,(}) is the a-Car-
tesian component of u(}), « = x, y, 2. _

The total potential energy @ of the crystal is assumed to be some
function of the instantaneous positions of all atoms. If @ is expanded in
a Taylor’s series in powers of the atomic displacements u(?), we obtain
formally that

D = Dy + D Bola) ald) + £, Pugl(ihe) () #p(5) + oo (2.1.4)

K& lyxya
l'y“'vﬁ

where, in keeping with the harmonic approximation, we neglect all
higher order terms. @, is just the static (equilibrium) potential energy
of the crystal, while clearly

D (

nd ) (2.1.52)
(1]

)= By

oy =22 ) (2.1.5b)
3ua(x) auﬂ(x”) 0

where the subscript 0 means that the derivatives are evaluated in the
equilibrium configuration. From its definition, Eq. (2.1.5a), we see
that the physical interpretation of the coefficient @,(!) is that it is the
negative of the force acting in the a-direction on the atom at x(*) in the
equilibrium configuration. However, in the equilibrium configuration
the force on any particle must vanish, and so we have the result that
in an equilibrium configuration

®,(}) = 0. (2.1.6)

The Hamiltonian for the crystal can thus be written in the harmonic
approximation as ‘

H =+ 3 M) + 33 Pl il ul),  (21.7)
1733 ixa

Uk'B
and the equations of motion of the lattice follow immediately:

Mt (0) = — -55%)— = —;2;};¢“ o) s, (2.1.8)
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The coefficient D,,(}}) is the force exerted in the a-direction
on the atom at x(}) when the atom at x(J) is displaced a unit distance
in the g-direction. From Eq. (2.1.5b) we see that ®,,(}V) satisfies the
symmetry condition

Poplinr) = Ppolih). (2.1.9)

The periodicity of the lattice requires that if the lattice as a whole is
translated relative to itself by a lattice vector x(/) it coincides with
itself. This fact has the consequence that the same triplet of integers
(s Iy, I3) can be added to the cell index ! in the coefficient o,(h,
and to both of the cell indices in the coefficient @,4(!Y) without
changing its value. Thus @(!) must be independent of I, while
@,4(+4) can only depend on the relative cell index /-/’ and not on
! and I’ separately. These results can be expressed as

D) = Pull);  Pap(ih) = DoY), (2.1.10)

There exist a number of useful relations among the atomic force
constants @,,(!!) which follow from the behavior of the potential
energy and the force on an atom under rigid body translations and
rotations.

We first set each of the displacement vectors u(}) equal to an
arbitrary constant vector v which is independent of / and «. This
corresponds to a rigid body translation of the crystal as a whole by the
amount v, and its potential energy cannot be changed by this dis-
placement. However, formally, Eq. (2.1.4) becomes

D =Py + 3, Bu() v, + 1}; Poup(e) Vo + . (2.1.11)
ixo QL
Uk 3

The apparent change in @ described by the last two terms on the
right-hand side of this equation must vanish. Since v is an arbitrary
vector, we must equate to zero the coefficient of each power of v,. In
this way, we obtain the relations '

> 0uh) =0

; Do) = 0.
'k



8 II. ELEMENTS OF THEORY OF LATTICE DYNAMICS
In view of Eq. (2.1.10) we can write the first of these equations as
2, Pu(h) =0, (2.1.12a)

which expresses the fact that even if the initial configuration is not an
equilibrium one so that the net force on each atom does not vanish, it
must still be one in which the net force on a unit cell vanishes,

A more restrictive condition on the {®,(!L)} follows from the
behavior of the force on each atom, F,(}), under a rigid body trans-
lation of the crystal. We have that

—Ful) = o = D) + D Ol ) + . (2LI13)
ou (t) s

If we replace each u,(}) by v, we have merely displaced the lattice

rigidly through the vector v, and this operation cannot change the

value of the force on an atom in the initial configuration. We are thus
led to the condition

2 Pus(h) =0 =3, 0,4, (2.1.12b)
Uk’ Uk’

We now subject the lattice to a homogeneous deformation about the
point (;0) which is described by '

il ;u«pxp(i‘;;) + euld) (2.1.14)

where the u,, are arbitrary constant parameters, and () is the
displacement of the atom (!) from its new mean position in the
deformed crystal. We have used the notation x(}) — x(2) = x(th).
If Eq. (2.1.14) is substituted into Eq. (2.1.4) and the terms are collected
in powers of ¢,(!) we find that

D = B+ 30,0 1 0) + 1 3 0 oty 5,
. A

z';’;p
+ 22,0 +12‘¢¢ )ty %) + ) € () + .
2

Now, after such a deformation the lattice still remains a lattice.
The terms independent of ¢,(}) respresent the static energy of the new
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deformed lattice, the terms linear in the ¢,(!) give the change in
the potential energy of the new lattice due to arbitrary displacements
of the atoms from their new mean positions, and so on. If all of the
vectors €(}) are set equal to an arbitrary vector v, independent of / and
x, we are merely subjecting the deformed lattice to a rigid body
translation for which the potential energy remains unchanged.
Equating the coefficient of v, to zero, we thus obtain the condition
that

2O + 0 upl) + - =0 @119
A

In view of Eq. (2.1.12b) we can identify the point (}¢) with the point (7)
in the sum over (}) with no loss of generality. Then since the Uyp
are arbitrary, the satisfaction of this equation requires that we set
equal to zero the coefficient of every power of .5 The new condition
obtained in this way is

D, Paskon) (49 = 0. (2.1.16)

Un'x

It should be emphasized that Eq. (2.1.15) is not the equation of
equilibrium for the deformed lattice, which would be obtained by
differentiating @ with respect to ¢,(!) and equating the result,
evaluated at ¢,(}) = 0, to zero. In the general case of a lattice which
contains more than one atom per unit cell the homogeneously
deformed configuration described by Eq. (2.1.14) will not be an
equilibrium configuration, that is, forces would have to be applied to
the atoms to maintain this configuration. These forces are given by
(0D/2ey(1))o- Only in the special case that each atom is located at a
center of symmetry can we equate these forces to zero. The relations
among the force constants which result are given by Egs. (2.1.16)
with the sum over « suppressed.

The last conditions on the atomic force constants we consider are
those which are imposed on them bysthe transformation properties of
the potential energy and its derivatives under an infinitesimal rigid
body rotation of the crystal. Consider the displacements described by

(%) = Z,, wapgl(l) 2.1.17)

where the parameters w,, are the elements of an infinitesimal antisym-
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metric matrix, w,; = —wy,. If we substitute Eq. (2.1.17) into
Eq. (2.1.4) and retain only terms linear in the W, We obtain

P = By + 3 Do) waprs(h).
(7%
B

The invariance of the potential energy against rigid body rotations of
the crystal requires us to equate to zero the coefficient of Wy = —awg,,
and we find

2P 15D = D, D) 2 2). (2.1.18)
173 ix
If we substitute Eq. (2.1.17) into Eq. (2.1.13), we obtain

—F, (%) = @) +l§¢a ) wg 2 L)
. p &

However, F,(}!) must transform as the a-component of a vector when
the lattice is subjected to a rigid body rotation, that is,

Fy() = ; (Bap + wap) F, ﬁ(l)
Comparing these two equations we are led to the relation

D) Pup( L) wpy(L) = zﬁ; wasPy(}).
Uk’g
Y

Equating the coefficients of w,; on both sides of this equation, we find
D (Paglia’) ) (HE) — B (W) gLl = Bap @) — 80y Pyls) (2.1.19)
Uk’

where we have used Eq. (2.1.12b) to make the left-hand side of this
equation independent of the choice of origin.

The restrictions on the number of distinct atomic force constants
@,5(+s-) which are imposed by lattice symmetry and structure are
discussed in detail by Leibfried (4).

In the.special case that the total potential energy is the sum of
pairwise interactions between all the atoms in the lattice, each pair of
atoms interacting through a potential function é..(r) which depends



