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Preface

This volume contains the papers presented at the 11th workshop on Job Schedul-
ing Strategies for Parallel Processing. The workshop was held in Boston, MA,
on June 19, 2005, in conjunction with the 19th ACM International Conference
on Supercomputing (ICS05).

The papers went through a complete review process, with the full version
being read and evaluated by an average of five reviewers. We would like to thank
the Program Committee members for their willingness to participate in this
effort and their excellent, detailed reviews: Su-Hui Chiang, Walfredo Cirne, Allen
Downey, Wolfgang Gentzsch, Allan Gottlieb, Moe Jette, Richard Lagerstrom,
Virginia Lo, Jose Moreira, Bill Nitzberg, and Mark Squillante. We would also
like to thank Sally Lee of MIT for her assistance in the organization of the
workshop and the preparation of the pre-conference proceedings.

The papers in this volume cover a wide range of parallel architectures, from
distributed grids, through clusters, to massively-parallel supercomputers. The
diversity extends to application domains as well, from short, sequential tasks,
through interdependent tasks and distributed animation rendering, to classical
large-scale parallel workloads. In addition, the methods and metrics used for
scheduling and evaluation include not only the usual performance and workload
considerations, but also considerations such as security, fairness, and timezones.
This wide range of topics attests to the continuing viability of job scheduling
research.

The continued interest in this area is reflected by the longevity of this work-
shop, which has now reached its 11th consecutive year. The proceedings of pre-
vious workshops are available from Springer as LNCS volumes 949, 1162, 1291,
1459, 1659, 1911, 2221, 2537, 2862, and 3277 (and since 1998 they have also been
available online).

Finally, we would like to give our warmest thanks to Dror Feitelson and Larry
Rudolph, the founding co-organizers of the workshop. Their efforts to promote
this field are evidenced by the continuing success of this workshop. Even though
they are stepping down from the organization of the workshop, we hope they
will continue to lend their expertise and contribution to the workshop and the
field as a whole.

August 2005 Eitan Frachtenberg
Uwe Schwiegelshohn
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Modeling User Runtime Estimates

Dan Tsafrir, Yoav Etsion, and Dror G. Feitelson

School of Computer Science and Engineering,
The Hebrew University, 91904 Jerusalem, Israel
{dants, etsman, feit}@cs.huji.ac.il

Abstract. User estimates of job runtimes have emerged as an important
component of the workload on parallel machines, and can have a signifi-
cant impact on how a scheduler treats different jobs, and thus on overall
performance. It is therefore highly desirable to have a good model of
the relationship between parallel jobs and their associated estimates. We
construct such a model based on a detailed analysis of several workload
traces. The model incorporates those features that are consistent in all
of the logs, most notably the inherently modal nature of estimates (e.g.
only 20 different values are used as estimates for about 90% of the jobs).
We find that the behavior of users, as manifested through the estimate
distributions, is remarkably similar across the different workload traces.
Indeed, providing our model with only the maximal allowed estimate
value, along with the percentage of jobs that have used it, yields results
that are very similar to the original. The remaining difference (if any)
is largely eliminated by providing information on one or two additional
popular estimates. Consequently, in comparison to previous models, sim-
ulations that utilize our model are better in reproducing scheduling be-
havior similar to that observed when using real estimates.

1 Introduction

EASY Backfilling [19,21] is probably the most commonly used method for
scheduling parallel jobs at the present time [7]. The idea is simple: Whenever
the system status changes (a new job arrives or a running job terminates), the
scheduler scans the queue of waiting jobs in order of arrival. Upon reaching the
first queued job that can not be started immediately (not enough free proces-
sors), the scheduler makes a reservation on the job’s behalf. This is the earliest
time in which enough free processors would accumulate and allow the job to run.
The scheduler then continues to scan the queue looking for smaller jobs (require
less processors) that have been waiting less, but can be started immediately
without interfering with the reservation. The action of selecting smaller jobs for
execution before their time is called backfilling.

To use backfilling, the scheduler must know in advance the length of each
job, that is, how long jobs will run.! This information is used when comput-
ing the reservation time (requires knowing when processors of currently running

! This is true for any backfilling scheduler, not just EASY.

D. Feitelson et al. (Eds.): JSSPP 2005, LNCS 3834, pp. 1-35, 2005.
© Springer-Verlag Berlin Heidelberg 2005



2 D. Tsafrir, Y. Etsion, and D.G. Feitelson

jobs will become available) and when determining if a waiting job is eligible for
backfilling (must be short enough so as not to interfere with the reservation).
As this information is not generally available, users are required to provide run-
time estimates for submitted jobs. Obviously, jobs that violate their estimates
are killed. This is essential to insure that reservations are respected. Indeed,
backfilling is largely based on the assumption that users would be motivated to
provide accurate estimates, because jobs would have a better chance to backfill
if the estimates are tight, but would be killed if the estimates are too short.

However, empirical investigations of this issue found that user runtime esti-
mates are actually rather inaccurate [21]. Results from four different installations
are shown in Fig. 1 (Section 4 discusses the four presented workloads in detail).
These graphs are histograms of the estimation accuracy: what percentage of the
requested time was actually used. The promising peak at 100% actually reflects
jobs that reached their allocated time and were then killed by the system ac-
cording to the backfilling rules. The hump near zero was conjectured to reflect
jobs that failed on startup, based on the fact that all of them are very short
(less than 90 seconds). The rest of the jobs, that actually ran successfully, have
a rather flat uniform-like histogram.

16 -SDSC-8P2 o _ CTC-8P2 .. _ KTH-SP2  ,, SDSC-BLUE

Ty
5 13 12 - 12 - 12 -
172}
Q
KX
S 8 8 8 8 -
)
Q
S
3
{ ol

100 0 50 100 0 50 100

OK jobs accuracy [%]
W Kkilled jobs

B <90sec jobs

Fig. 1. Accuracy histogram of user runtime estimates: accuracy = 100 x %

The issue of user runtime estimates has since become the focus of intensive
research. A number of studies have suggested that inaccurate runtime estimates
are actually good, as they provide the scheduler with more flexibility and even-
tually lead to better performance; as a result, it was even proposed to simply
double the user runtime estimates before using them [29,21], or further, ran-
domizing them [22]. In contrast, other studies contend that accurate runtime
estimates are actually better, as they can lead to even better performance if
used correctly, e.g. by scheduling in some SJF (shortest job first) based order
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(14,23, 1, 25]. Still other studies have shown that the accuracy of user estimates
can have non-trivial effects on the results of performance evaluations [8].

1.1 Motivation

All this activity spurred a search for ways to model user runtime estimates.
Such a model is needed for three reasons. First, it is useful as part of a general
workload model that can be used to study different job scheduling schemes, e.g.
by means of simulation. Second, it is often the case that existing log files from
production systems (used to drive simulations) are missing this information; a
model can help in artificially manufacturing it. Third, a model may provide
insights that will be useful in the study of whether and how the inaccuracy of
estimates may be exploited by the scheduler.

We would like to make it clear that this paper targets the first two reasons
mentioned above, that is, we aim to model and reflect reality, not to make it bet-
ter. Indeed, in a different study, we show how backfilling schedulers can produce
and utilize better runtime predictions that dramatically improve performance
[25]. But even this novel technique often relies on user estimates under various
conditions. Additionally, recall that user estimates have a role that is different
than just serving as approximated runtimes, as they are also part of the user
contract: the system guarantees a job will never be killed before its user estimate
is reached. Consequently, system generated predictions (or other conceivable fu-
ture mechanisms that are similar) can’t “just” replace estimates.

At the same time, estimates ensure that jobs will indeed be killed at some
point. Systems with no user estimates at all (that is, no runtime upper bound)
are also undesirable, as these will allow jobs to run indefinitely, potentially over-
whelming the system. At the very least we would expect users to choose some
runtime upper-bound from a predefined set of values. However, this scenario is
rather similar to reality, in which most users are already limiting themselves to
very few canonical “round” estimates (as will be shown below), and jobs that
exceed their estimates are immediately killed. It turns out there is actually no
fundamental difference between allowing users to choose “any value”, or from
within a limited set.

Therefore, regardless of any possible scheduling improvements or changes, it
seems a parallel workload model will not be complete if realistic user estimates
are not included. Importantly, we will show that systems perform better if real
user estimates are replaced with artificial ones, generated by existing models.
This uncaptured “badness” quality of real user estimates constitutes a serious
deficiency of existing models, as the purpose of these is to reflect reality, not to
paint a brighter (false) picture. While counter intuitive, our goal in this paper
is to produce estimates such that performance is worsened, not improved. Only
when such a model is available, we can take the next step and consider ways to
improve performance, based on a truly representative workload.

In the reminder of this section we survey the estimate models that have been
proposed, and point out their shortcomings. This motivates the quest for a better
model, which we propose in this paper.
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1.2 Existing Models

The simplest possible model is to assume that user estimates are accurate. For
example, such a model was used by Feitelson in [8]. This approach has two
advantages: it is extremely simple, and it avoids the murky issue of how to
model user estimates correctly. However, as witnessed by the data in Fig. 1, it
is far from the truth.

A generalization of this model is to assume that a job’s estimate is uniformly
distributed within [R, (f +1)R], where R is the job’s runtime, and f is some non
negative factor (f can’t be negative because jobs are killed once their estimates
are reached). If f = 0, this means that the estimates are identical to runtimes; if
f = 4, they are distributed between R and 5R, with an average of 3R. Arguably,
higher f values model increasingly inaccurate users. This model, which we call
the “f-model”, was proposed by Mu’alem and Feitelson [11] and several variants
of it were used to investigate the effects of inaccuracy [29,21,1]. It was also
used by several researchers in simulations using workloads that did not contain
estimates data [13,8]. The main problem with this model is that the estimates
it creates are overly correlated with the real runtimes, so it actually gives the
scheduler considerable amount of valuable information that is unavailable when
real user estimates are used. In particular, it enables the scheduler to effectively
identify shorter jobs and select them for backfilling, leading to SJF-like behavior.
For example, under this model, a one-hour job will always appear longer than
a one-minute job (in reality, this is often not the case). This leads to better
performance results than those observed when using real user estimates.

A third model, also proposed by Mu’alem and Feitelson, attempts to repro-
duce the histograms of Fig. 1. These flat histograms imply that R/F = u, i.e.
that the ratio of the actual runtime R to the estimate E can be modeled as a
uniformly distributed random variable (v € [0,1]). By changing sides we find
that given a runtime R divided by w results in an artificial estimate E. While
unrelated to the actual user estimate for this particular job, this is expected
to lead to the same general statistics of all the estimates taken together. The
model also created the peak at 100% and the hump at low values. Finally, if E
came out outrageous (because u happened to be very small), it was truncated
to 24 hours. This was called the “¢-model” by Zhang et al. [27] (¢ denoted the
fraction of jobs in the 100% peak), who used it in various simulations.

The problem with this model is that it is missing a “hidden” factor which is
often overlooked: that all production installations have a limit on the maximal
allowed runtime. For example, on the SDSC SP2 machine this limit is 18 hours.
Naturally, the limit also applies to estimates, as it is meaningless to estimate
that a job will run for say 37 hours if all jobs are limited to 18 hours.

Consider Fig. 2 which displays the average accuracy of jobs grouped to 100
equally sized bins according to their runtime, for four different production traces.
It has previously been conjectured that the apparent connection between longer
runtimes and increased accuracy, is because the more a job progresses in its com-
putation, the grater its chances become to reach successful completion [3]. How-
ever, this false hypothesis ignores the existence of a maximal allowed runtime,
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Fig. 2. Average accuracy as a function of jobs’ (binned) average runtime

which suggests long jobs are guaranteed to have high accuracy. For example, if a
job runs for 17 hours, its estimate must be in the range of 17 to 18 hours, so it’s
using at least 94.4% of its estimate. In other words, in contrast to the underlying
assumption of the ¢-model, the distribution of jobs in the accuracy histogram
(Fig. 1) is not uniform. Rather, long jobs must be on the right, where accuracy
is high, while short jobs tend to be on the left, at lower accuracies.

A fourth rather similar model was proposed by Cirne and Berman (3], which
took the opposite direction in comparison to the previous model and chose to pro-
duce runtimes as multiples of estimates and accuracies, while generating direct
models to the latter two. This decision was based on the argument that accu-
racies correlate with estimates less than they do with runtimes. In their model,
accuracies were claimed to be well-modeled by a gamma distribution (this seems
to be the result of trying to model the uniform part of the histogram along with
the hump at low accuracies, by using one function for both). Estimates were suc-
cessfully modeled by a log-uniform distribution. This methodology suffers from
the same problem as the previous model, because accuracy is again independent
of runtime. In addition, this model is not useful when attempting to add esti-
mates to existing logs that lack them, or to workloads that are generated by
other models which usually include runtimes and lack estimates (10, 6, 15, 20].

In addition to the per-model shortcomings mentioned above, there are two
drawbacks from which all of them collectively suffer: The first is lack of repeti-
tiveness: The work of users of parallel machines usually takes the form of bursts
of very similar jobs, characterized as “sessions” [8,28]. In the SDSC-SP2 log
for example, the median value of the number of different estimates used by a
user is only 3, which means most of the associated jobs look identical to the
scheduler. It has been recently shown that such repetitiveness can have decisive
effect on performance [26]. The second shortcoming is a direct result of the first:
estimates form a modal distribution composed of very few values, a fact that is
not reflected in any existing model. This is further discussed in the next section.

The conclusion from the above discussion is that all currently available models
for generating user estimates are lacking in some respect. Consequently, using
them in simulations leads to performance results that are generally unrealistically
better than those obtained when real user estimates are used. Our goal in this
paper is to capture the “badness” of real user estimates by finding a model that
matches all known information about them: their distribution, their connection
with each job’s runtime, and their effect on scheduler performance.
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2 Modality

We require a model capable of generating realistic user estimates. The usual
manner in which such problems are tackled is by fitting observed data to well
known distributions, later to be used for producing artificial data. To some ex-
tent, this methodology is applicable when modeling estimates, which appear to
be well captured using the log-uniform distribution [3] as shown in Fig. 3.
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Fig.3. Runtime and estimate CDFs (cumulative distribution functions) of the four
workload traces. Runtime-curves are much higher than estimate-curves because run-
times are much shorter than estimates. For example, in CTC, 40% of the estimates are
shorter than one hour (60% are longer), while for runtimes the situation is reversed
(only 40% are longer than one hour).

The difficulty lies in that user estimates embody another important charac-
teristic: unlike runtimes, they are inherently modal [21, 2, 17|, because users tend
to repeatedly use the same “round” values (e.g. five minutes, one hour, and so
on). This is reflected in the staircase-like estimate curves of Fig. 3, in which each
mode corresponds to a popular estimate value.

In particular, note the significant modes located at the maximal estimate of
each trace, where the runtime and estimate curves finally meet (in Section 4 we
will see that 4h and 2h effectively serve as the maximal estimate values of KTH-
SP2 and SDSC-BLUE, respectively). Evidently, the maximal estimate is always
a popular value. For example, this value is used by a remarkable 24% of CTC
jobs. This phenomenon probably reflects users’ lack of knowledge or inability to
predict how long their jobs will run, along with their tendency to “play it safe”
in the face of strict system policy to kill underestimated jobs.

In the context of job scheduling, this observation is quite significant, as
maximal-estimate jobs are the “worst kind” of jobs in the eyes of a scheduler as
they are too long to be backfilled. In fact, if all jobs chose their estimates to be
the maximal value, all backfilling activity would stop completely.?

The observation about the maximal estimate mode may also be applied, to
some extent, on other (shorter) modes: Consider the scenario in which an SJF

* Except for when using the “extra” nodes, see [21] for details.
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scheduler must work with estimates that are highly inaccurate. If these esti-
mates nevertheless result in a relatively correct ordering of waiting jobs, per-
formance can be dramatically improved (up to an order of magnitude accord-
ing to [1]). However, if estimates are modal, many jobs look the same in the
eyes of the scheduler, which consequently fails to prioritize them correctly, and
performance deteriorates. In general, if the estimate distribution is dominated
by only a few large monolithic modes, performance is negatively effected, as
less variance among jobs means less opportunities for the scheduler to perform
backfilling.

Modality is absent from existing estimate models. An immediate heuristic
that therefore comes to mind when trying to incorporate modality, is to “round”
artificially generated estimates (e.g. by one of the models described above) to
the nearest “canonical” value: values smaller than 1 hour are rounded to (say)
the nearest multiple of 5 minutes, values smaller than 5 hours are rounded to
the nearest hour, and so on. Experiments have shown that this heuristic fails
in capturing the badness of user estimates, and performance results are similar
to those obtained before this artificial modality was introduced. Additionally,
arbitrary “rounding” fails to reproduce the various properties of the estimate
distribution, as reported in the following sections.

The fact of the matter is that modes have a different (worse) nature than pro-
duced by the above. For example, when examining the number of jobs associated
with the most popular estimates, we learn that these decay in an exponential
manner e.g. half of the jobs use only 5 estimate values, 90% of the jobs use 20
estimates values etc. In contrast, the decay of less popular modes obeys a power
law. In fact, almost every estimates-related aspect exhibit clear “model-able”
(that can be modeled) characteristics.

3 Methodology

The modal nature of estimates motivates the following methodology. When ex-
amining a trace, we view its estimate distribution as a series of K modes given by
{(tz,pz)}l 1- Each pair (¢;, p;) represents one mode, such that ¢; is the estimate-
value in seconds (¢ for time), and p; is the percentage of jobs that use ¢; as
their estimate (p for percent or popularity). For example, the CTC mode series
includes the pair (18h,23.8%) because 23.8% of the jobs have used 18 hours
as their estimate. Occasmnally, we refer to modes as bins within the estimate
histogram. Note that 21 1 Pi = 100% (we are considering all the jobs in the
trace). The remainder of this section serves as a roadmap of this paper, describ-

ing step-by-step how the {(tz,p7)} _; mode-series is constructed.

3.1 Roadmap of This Paper

Each of the following paragraphs correspond to a section or two in this paper,
and may contain some associated definitions to be used later on.
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Trace Files. We build our model carefully, one component at a time, in order to
achieve the desired effect. Each step is based on analyzing user estimates in traces
from various production machines, in an attempt to find invariants that are not
unique to a single installation. The trace files we used and the manipulations we
applied on them are discussed in Section 4.

Mass Disparity. Our first step is showing that the modes composing the mode-
series naturally divide into two groups: About 20 “head” estimate values are
used throughout the entire trace by about 90% of the jobs. The rest of the
estimates are considered “tail” values. This subject is titled “mass disparity” and
is discussed in Section 5. We will see that the two mode groups have distinctive
characteristics and actually require a separate model. Naturally, the efforts we
invest in modeling the two are proportional to the mass they entail.

Number of Estimates. We start the modeling in Section 6 by finding out how
many different estimates there are, that is, modeling the value of K. Note that
this mostly effects the tail as we already know the head size (~20).

Time Ranks. The next step is modeling the values themselves, that is, what
exactly are the K time-values {757}11‘=l The indexing of this ascendingly sorted
series is according to the values, with ¢; being the shortest and tx being the
maximal value allowed within the trace (also denoted T},4.). The index i denotes
the time rank of estimate ¢;. This concept proved to be very helpful in our
modeling efforts. We also define the normalized time of an estimate t; to be
ti/Tmae (a value between 0 and 1). Section 7 defines the function Fy;, that gets
i as input (time rank), and returns ¢; (seconds).

Popularity Ranks. Likewise, we need to model the mode sizes / popularities /
percentages: {p; }f(zl This series is sorted in order of decreasing popularity, so p;
is the percentage of jobs associated with the most popular estimate. The index
J denotes the popularity rank of the mode to which p; belongs. For example,
the popularity rank of 18h within CTC is 1 (p; = 23.8%), as this is the most
popular estimate. We also define the normalized popularity rank to be j/K (a
value between 0 and 1). Section 8 defines the function Fj, that gets j as input
(popularity rank), and returns p;, the associated mode size.

Mapping. Given the above two series, we need to generate a mapping between
them, namely, to determine the popularity p; of any given estimate ¢;, which are
paired to form a mode. Section 9 defines the function F,,, that gets i as input
(time rank) and returns j as output (popularity rank). Using the two functions
defined above, we can now associate each ¢; with the appropriate p;. This yields
a complete description of the estimates distribution. The model is then briefly
surveyed in Section 10.

Validation. Finally, the last part of this paper is validating that the resulting
distribution resembles the reality. Additionally, we also verify through simulation
that the “badness” of user estimates is successfully captured, by replacing the
original estimates with those generated by our model. The replacement activity



