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Preface

Origins

In 1957 a grant was made to the National Bureau of Standards, by
the National Science Foundation, for the support of a Training Program
in Numerical Analysis for Senior University Staff, under my direction.
An objective of this program was to attract mature mathematicians
into an area of vital importance which had- been largely neglected.
The first chapter of this book tries to show that numerical analysis is an
attractive subject in which mathematics of practically all sorts can be used
significantly, and from which many branches of mathematics can benefit.

After this was concluded it was decided to follow a suggestion of Dr.
Olga Taussky and to develop the lectures given there into a book
entitled “Survey of Numerical Analysis.”” Unfortunately, for various
reasons not all the speakers who took part in the program participated
in the development of the book, and there are some gaps.* In order
not to affect the unity of the program, it was decided not to attempt
to fill these gaps by including new contributions.t However, ample
material is included for an introductory course, as well as representative
chapters for advanced courses in numerical analysis and in supporting
mathematics.

The authors are grateful to both organizations for the oppertunity
to present their ideas orally, and to their teachers, colleagues, and
pupils for help in the later development.

Activities of Numerical Analysts

It is appropriate to discuss briefly what the activities of a numerical
analyst should be. In addition to considering the exploitation of

* Several of the gaps have been covered by excellent monographs which have
appeared recently. They cover, tor example, such subjects as asymprotics, com-
putability and unsoivability, initial-value problems, and linear programming.

1 We note that Dr. Walter Gautschi and Dr. Werner C. Rheinboldt, who took
part in the repetition of the Training Program (which took place in 1939, under the
direction of Dr. Philip J. Davis), collaborated with Prof. H. A. Antosiewicz on
Chapters 9 and 14.
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automatic computers in new areas, he should be concerned with the
solution of classes of problems: e.g., the solution of systems of linear
equations, or the solution of oxdmary differential equations. As well
as reexamining old methods in the llght of available equlpmenr he
should be devising and evaluating new methods. Since, in general, it
will be impossible for him to give the methods a complete theoretical
examination, he should carry out controlled computational experiinents,
in which, for instance, he compares the observed errors with his
theoretical estimates for realismn. These experiments should be recorded
and analyzed. Finally, he should construct and discuss “bad examples.”

Such material, when combined with the experience of computers
and the intuition of the customer, will be invaluable when the methods
are being applied in practice, beyond the regions in which they are
secure in the sense of classical mathematics.

The Education of Numerical Analysis

Informal teaching of the use of computers and of numerical analysis
can begin at a very carly stage. Formal teaching is appropriate
whenever a reasonable background in the calculus and matrix theory
15 achieved——usually in the junior year. The contents of Chapter 3
and thc first part of Chapter 8 are appropriate in a basic science
curticulum. However, in view of the current tendency to abstraction,
it may be necessary to incorporate them in the basic numerical analysis
course. This (‘OUI‘QC should include, in addition, most of the contents
of Chapters 1, 2, 4, 5, and 6. We have covered this material in a
two-quarter (,OUISC, wnth three lecture hours per week and appropriate
machine time.

We believe that there should be no division betwcen theoretical and
practical numerical analysis, and that a lecture without numerical
examples is a lecture wasted. The instructor should have had recent
machine experience and the supervision of practical work should, as
far as possible, not be delegated. The following general advice was
given by Prof. G. Pdlya* to prospective high school teachers: “Acquire,
and keep up, some aptitude for problem solving.”” This is particularly
relevant here, and to it we would add the further qualification of
experience in making examples.

Our worked examples and problems have an academic flavor, but -
this is mainly for brevity. They can be dressed up by the instructor
according to his taste; for instance, he can relate the calculations of
the zeros of Bessel functions to the ecigenvalues of a differential equation
and to the frequencies of vibrations of a drumhead. It is not possible

* (3. Pélya, On the Curriculum for Prospective High School Teachers, Amer. Math.
Monthly, vol. 65, pp. 101-104, 1958.
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to include in a survey significant case studies in, for example, reactor
engineering, astrophysics, or geophysics. Fortunately, however, mono-
graphs on such topics are becoming available.

Only in exceptional circumstances will teaching institutions be able
to provide computers and computer organizations at the level of the
best of the governmental and commercial installations. Generally,
therefore, we recommend that students get experience in such centers
as soon as they have completed the basic course. After this they will
be in a better position to appreciate advanced courses. Since the
practicing numerical analyst meets problems from many different areas,
one-quarter courses, such as could be based on the material in the later
chapters, are appropriate rather than more extensive treatments of
special topics.

Finally, in view of the rapid developments in the field, students must
be encouraged from the beginning to get acquainted with the periodical
literature; for this purpose we have given ample references in the text
and in the problems. The need for critical reading should be empha-
sized.

Remarks

In a composite work of this character, complete uniformity and
freedom from overlap is almost impossible to maintain. The known
inconsistencies in notations and terminology should not disturb the
reader, and the repetitions are to his advantage. We hope that the
errors and inaccuracies which have been overlooked will not be
troublesome. . ’

In the last decade, the clectronic engineers have increased the power
of our computers about a thousandfold; unfortunately there has been
no comparable development in the relevant mathematics. We hope
that this “Survey’ will aid such a development; our views on this point
are elaborated in Chapter 1. Although it may well be that the greatest
contribution of automatic computers will be outside of the physical
sciences, there is no doubt that a thorough grounding in mathematics
and numerical analysis is the best initial training for those concerned
with the use of computers if they are to avoid the many logical and
arithmetic perils which await those who use their machines formally
and uncritically.

John Todd
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i}
Motivation for Working
in Numerical Analysis*

FOHN TODD
PIRLOFESSOR OF MATHEMATICS
CALIVORNIA INSTITUTE OF TECHNOLOGY

1.1 Iatroduction

The profession of numerical analysis is not vet so desirable that it is
taken up by choice; indeed, although it is one of the oldest professions, it -
is only now becoming respectable.  Most of those who are now working
in this field have been more or less drafted into it, either in World War I
or in World War II, or more recently. The question at issue is, Why
have they stayed in this field and not returned to their earlier interests ?

The answer is that numerical analysis is an attractive subject in which
mathematics of practically all sorts can be used significantly and from
which many branches of mathematics can benefit. We call attention
here to the applicaticns of functional analysis by the Russian school led
by Kantorovitch [1]. {For a survey of sorme Western work see Collatz
[la]; see also Altman [90}.)  Ir another direction we recall the develop-
ments in analytic number theory by Lehiner and Rademacher which
followed MacMahon’s computations of p(n) for Hardy and Ramanujan
{2]. We note here the contribution of machines to a problem on re-
arrangements in real variable theory due to D. H. Lehmer [91], to the
theory of finite projective geometries and related fields by Hall and his

* This is a slightly revised and extended version of the article, with the same title,
which appeared in Comm. Pure Appl, Math., vol. 8, pp. 97--116, 1955, and which was
reprinted in “Transactions of the Symposium on Computing, Mechanics, Statistics
and Parrial Differential Equations,” F. E. Grubbs, F. J. Murray, and J. J. Stoker, eds.,
Interscience Publishers, Inc., New York, 1955.  We are grateful to the publishers for
permission to reproduce this here. A translation of this article into German, by
Prof. Dr. E. Kamnke, appeared in Jber. Deutsch. Maih. Verein., vol. 58, pp. 11-38,
1955; and a Russian version has appeared in Matematicheskoe prosveshchenie, vol. 1,
pp. 75-86, 1953, and vol. 2, pp. 97-110, 1956,

1



2 SURVEY OF NUMERICAL ANALYSIS

collaborators (see Chap. 15), to a problem of Taussky [122] in the
theory of sequence spaces by Kato [101], and to complex-function
theory by Kreyszig and Todd [93] and Kusmina [94].

Before proceeding to a discussion of some individual topics in numer-
ical analysis, some general remarks are in order. We have, on various
occasions, distinguished between classical and modern numerical analy-
sis, the latter being material required in connection with the exploitation
of high-speed automatic digital computing machines. It now seems
desirable to recognize ultramodern numerical analysis, which may be
specified as adventures with high-speed automatic digital computing
machines (see [50, 51]). There are, of course, no sharp boundaries
between these parts of the subject, and there is room for development in
the classical phases as well as in the newer areas.

In distinction to the deliberate explorations contemplated in ultra-
modern numerical analysis, there 1s much routine work in numerical
analysis which must necessarily be of an experimental or empirical
nature. Itisjust notfeasible to carry out rigorous error estimates for ail
problems of significant complication; it is necessary to piace considerable
reliance, on the one hand, on the experience of those familiar with similar
problems and, on the other, on the good judgment of the setter of the
problem. To justify this remark, we consider three examples. The
solution of systems of 20 or more first-order differential equationsis being
handled regularly. To sce the complication of theoretical error esti-
mates [in which the fact that all numbers handled are finite (binary)
decimals is disregarded], we refer to Bieberbach [3]. The complication
of a stability analysis in a system of 14 equations is evident from a study
carried out by Murray [4]. Again, the extent of a complete error esti-
mate for the problem of matrix inversions is familiar from the work of
von Neumann and Goldstine [5, 52] and Turing [6]. Finally, there are
the analysis of the triple-diagonal method for determining the character-
istic roots of a symmetric matrix by Givens [7, 7a] and the analysis of the
Jacobidiagonalization method by Goldstine, Murray, and von Neumann
[26].

What the numerical analyst has to do is to be aware of the precision of
results obtained from, for instance, the conformal mapping of an ellipse
on a circle by a certain process and, from these results, to extrapolate to
cases of regions of comparable shape. On the one hand, he has to ex-
amine general error analyses for their realism by comparison with cases
where the explicit, exact results are known. On the other hand, he
must devote time to the construction and study of bad examples so as to
counteract any tendency to too much extrapolation. For a preliminary
discussion of matrix inversion in the last two directions, we refer to New-
man and Todd [95] and to Todd [76, 77].
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The main part of this chapter is devoted to a discussion of some topics
in numerical analysis which appear attractive. These have been chosen,
among those with which the author is familiar, to point out some of the
techniques of the subject and to indicate some of the mathematicians who
have made distinguished contributions in the field. In addition, the
choice has been controlled by the author’s opinion that separation be-
tween theoretical and practical numerical analysis is undesirable. The
practicality of some of the techniques used is illustrated by computations
of the radiation from a simple source which is reflected from a Lambert
plane, recently carried out by Henrici [8], where the ideas of Secs. 1.3
and 1.6 were used.

1.2 Evaluation of Polynomiials

What is the best way of computing polynomials, for instance,
f(x) = QX" A g X - ay,

for a series of values of x, not equally spaced? (In the case where the
values of f(x) for a series of equally spaced values of x are required, build-
ing up f(x) from its differences might be the most convenient.) The
usual answer is to suggest the recurrence scheme:

Jo = ay,
Jri =7€f;+ar+1.* =0, 10,8 =1,

which was known to Newton but is usually ascribed to Horner [9]. In
this way we get f(x) by n additions and » multiplications. Is this the
best possible algorithm? Consider an alternative, in the case of

J(x) =1 + 2x + 3x2,
If we proceed as follows:
2x, x%, 3x2, 1 + 2x -- 3a2,

we need 3 multiplications and 2 additions compared with the 2 multipli-
cations and 2 additions needed in applying the above algorithm; thus

3%, 3x + 2, x(3x + 2), x(3x + 2) + L.

"This problem was formulated as one in abstract algebra by Ostrowski,
and he showed [9] that the above algorithm was indeed the best for poly-
nomials of degree not exceeding 4. A different approach was made
recently by Motzkin [10] (see also Belaga [98]). Not restricting him-
self to purely rational processes, he showed that algorithms which are



