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FOREWORD

The Conference on Topological Fixed Point Theory and Applications was held at
Nankai Institute of Mathematics, Tianjin, China, during April 5-8, 1988. Its aim was
to bring together topologists working in various areas of fixed point theory as well as
analysts interested in the applications, to discuss recent progress and current trends in
research.

This conference was sponsored by the Nankai Institute of Mathematics and sup-
ported by a grant from the Chinese Ministry of Education.

We would like to thank all the participants for their enthusiasm. We gratefully
acknowledge the assistance of many people who helped make the conference a success.
In particular, Prof. Zixin Hou who was one of the organizers of this meeting and Mr.
Xiuhua Dong who looked after the logistical details.

Boju Jiang
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BIFURCATION THEORY FOR METRIC PARAMETER SPACES

Thomas Bartsch
Mathematisches Institut der Universitat Heidelberg
Im Neuenheimer Feld 288, 6900 Heidelberg, W. Germany

Introduction

In [6] we introduced an index BI for bifurcation of fixed points. BI(f) is defined
for maps f: O — X where

- X is a Banach space, O C R* x X is open,

- f is completely continuous,

- f(p,0) =0forallpe T = T(f) := 0 n (R* x {0}) ,

- the set B = B(f) C T of bifurcation points is compact. Here B = T N clos(¥),
7 = 7(f) = {(p,z) € 0: f(p, ) = 2,z # O}.

BI(f) is an element of 7§ _, , the stable (k-1)-stem. It has properties analogous to
the fixed point index. In this note we shall first show how to define BI if the parameter
space is not RF but any metric space P. For simplicity we consider only the finite-
dimensional case X = R™. The bifurcation index will then lie in &*(P) where &* is
reduced stable cohomotopy theory. If P = §* = R* U {oo} then &*(S*) = n_, and
the new definition reduces to the old one. In addition to the properties of BI proved
in [6] we show that BI is natural in P and is commutative. This last property allows
to replace X by an ENR or even P X X by an ENRp E — P where the trivial fixed
points are given by a section P — E.

Obviously BI has a lot in common with the fixed point index. This similarity is
not purely formal as will be shown by a formula relating BI and Dold’s fixed point

index for fibre-preserving maps (cf. [9]). This formula gives a new way of calculating
BI.

1. Construction and properties of BI
We first define BI(f) in the following situation. P is a metric space, E := P x R".

We consider a continuous map f : O — E over P,i.e. f(p,z) = (p, f2(p,2)); O C E
open. Assume f(p,0) = (p,0) for all p € T := O N P. (We identify P and P x {0}.)

This paper is in final form. No version of it will be submitted for publication
elsewhere.



We are interested in the set
7 =7(f) = A{(p,2) € 0: f(p, 2) = (p, ),z # O}
of nontrivial fixed points and the set
B =B(f):=T nclos(¥)

of bifurcation points. Of course, B is a closed subset of T.

If B is a closed subset of P we define BI(f) as follows. Let d denote the metric of
E given by the sum of the metrics of P and R". Then

p: T - RE, olp) := min{l,% - d({p},clos(¥) UBO)},

(1.1) Ao :={(p,2) € 0: p€ T,|lzll = p(p)} CO\ 7,
Ay :={(p,z) € Ap: p€E T\B}CO\(TU?F),
p: (Ta it \ B) X Sn—l o (AO’AI)’ (p$x) s (p$90(p) * z)-

(1.2) Definition. BI(f) € @!(P) is the image of 1 € w™(R",R"\ {0}) = Z under
the following sequence of homomorphisms (v : P X R" — IR" the projection).

W™ (R, R\ {0) 250 (40, A1) —E—w™(T, T\ B) x 5™Y)

LBams (T, T\ B)——w (P, P\ B) ——s BYP)

Here £,_; € w,_1(S™ 1) is induced by the identity on S™~1.
[:w(T,T\B)x 8" ) ®wp-1(S""") — w}(T,T\B8)

is the slant product (cf. Switzer [15], Chapter 13). ¢* is an excision isomorphism since
B is closed and T is open in P.

BI(f) can be thought of as a stable map P A S*~! — S". If P = S* this map
can be considered both as an element of &!(S*) and of 7f_,. In [6] we chose the latter
version. Also observe that in the case O ¢ R* x R" B is closed in ¥ = R* U {oo} iff
it is a compact subset of R*.

(1.3) BI enjoys a number of properties.
Let E* denote the space P x (R" U {oo})/P x {00} and C*0 := E*\ 0.

Existence. If BI(f) # O then B and CT O cannot be separated in BU F U CO.
This means that BU F U CtO cannot be written as the disjoint union U UV of open
subsets U and V with B C U and C*O C V. If P is compact this implies the eristence
of a connected set S C F with BNclos(S) # 0 # CtONnclos(S) (cf. [8], Proposition 5).
CtO Nclos(S) # 0 is equivalent to the statement that the projection BN S C E — P
is not proper. In particular, f is not compactly fized (cf. [9]). Thus BI(f) # O implies
that the fized point indez I(f) of f in the sense of [9] is not defined. Even more, there
does not ezist an open neighbourhood V of B € O such that I(f|V) is defined.



Localisation. If O’ C O is open and B C O' then BI(f) = BI(f|0’).

Additivity. If O = 0, U 0z, 01,0, open and BN 3(01 N Oz) =0 then BI(f|01),
BI(f|02) and BI(f|01 N Oz) are defined and

BI(f) = BI(f|01) + BI(f|02) — BI(f|01 N 03).

Homotopy invariance. If P C F =[0,1] x P x R" is open and h: P — F is a
map over [0,1] X P with h(t,p,0) = (t,p,0) and B(h) closed in [0,1] x P then Bl(h;) is
independent of t € [0,1]. Here hy(p,z) = h(t,p,z) ts the part of h over t.

Stability. If 0:R — IR is the constant map then BI(f x 0) = BI(f). Of course,
(f x 0)(p, z,y) = (f(p,2),0).

Naturality. Let Q be another metric space and ¢:Q — P continuous. Let
V*f:9*0 — ¢*E denote the pullback of f:O0 — E (cf. Dold [9], (2.8)). Then

BI(y*f) = ¢*(BI(f)) € 3'(Q)-

Commutativity. Let 0 C E=PxR", P C F =P xIR™ be openand f:0 — F,
g: P — E be continuous maps over P such that f(p,0) = (p,0), g(p, 0) = (p,0). Then
B(fog)=B(go f) =: B and if this set is closed in P BI(f og) = BI(go f).

Only the last two properties have not been proved in [6]. The proofs in [6], though
only for the special case O C RF x R* ¢ S*¥ x R™ and working with stable homotopy
w, instead of w*, can easily be adopted to the situation here. (The statement of the
homotopy invariance in [6] is not correct. There it was only assumed that BI (he) is
defined for all t € [0,1]. This does not imply BI(ho) = BI(h1) as can be seen from the

example
h::R xR — R x R, h(p,z) = (p, tpz).

BI(ho) =0, BI(h) =1fort #0.)
To prove Naturality observe that B(¢*f) = ¢~1(B(f)), hence BI(¢*f) is defi-
ned if BI(f) is defined. Furthermore 3% induces homomorphisms connecting the cor-

responding terms in the defining sequences of BI(f) and BI (* f) making everything
commute.

The proof of the Commutativity property is as in the case of the fixed point index
(cf. [11], VIL5.9). For the convenience of the reader we give the necessary deformations
and check the bifurcation sets.

IXOXR? > IXEXR" = XE XpF,
(t’p) z, y) i (t1pag2 o f(p, x)at.fZ(py Z)),
is a homotopy between ap = (g9 o f) x 0 and ;. The fixed point set of o is
Fiz(a) = {(t,p,z,v):9 0 f(p,2) = (p,2), y = tfa(p,2)}.
Thus B(a) = I x B(go f) C I x P is closed.

B:Ix0 xpP—IXEXpF,
(t,p,z,y) — (t,p, (1 — t)g2 o f(p, z) + tg2(p,y), f2(p, 7)),



is a homotopy between 8o = a; | I x O Xp O’ and B;. The fixed point set of 8 is

Fiz(B) = {(t,p,z,y): f(p,2) = (P,¥), 9(p,y) = (p,2)}
7 {(t’pazvy):(psz) €Fizgof, y= fz(P,-'E)}-

Again B(B) = I x B(go f) C I x P is closed. Applying Stability, Homotopy inva-
riance and Localisation yields BI(g o f) = BI(#;). Symmetric deformations yield

BI(f o g) = BI(f).

We use Commutativity to define BI in more general situations. We remind the
reader that an ENRp is a space over P, m: E — P, such that there gxists a euclidean
space IR", an open subset U of P x R" and (continuous) maps E 5 UD E over P
with ro1 = 1dg.

Let E be an ENRp, O C E open and f: 0 — E a map over P. Suppose there
exists a section 0: P — E such that foo =0 on T =071(0). T is the set of trivial
fixed points of f (we identify P and o(P)). As usual we set ¥ = Fiz(f) \ T and
B = T Nclos(¥). If B is a closed subset of P we define BI(f) as in the case of the fixed
point index.

(1.4) Definition. Choose E % U 5 E as in the definition of an ENRp. We may
assume t 00 = 1p: P — P x {0} C U. This can always be achieved by a translation in
each fibre {p} x R". Then

BI(f) := BI(io for|r=1(0))

is the bifurcation index of f. It is independent of the choice of ¢ and r (Commuta-
tivity).

The properties of BI(f) continue to hold in the general situation. The space E*
needed to formulate the Existence property is E* := EU{oco}. A neighbourhood basis
of 0o consists of the complements E+ \ A of subsets A C E such that 7|4 is proper. As
a consequence of the Existence property BI(f) hastobe 0if 0 = E and m: E — P is
proper.

2. Relation to the fixed point index

As in Part 1 we consider an ENRp m: E — P with a section 0: P — E and a map
J:0 — E over P, O C E open, with foo=00on T =01(0).

If the parameter space is one-dimensional, P = IR U {00}, and if B is contained in
an interval, B C |po,p1| C [po,p1] C T, then BI(f) is simply the difference of the local
fixed point indices I(f,,,0) — I(fp,,0). Here f,: 0, — E, is the part of f over p. For
p & B 0 is an isolated fixed point, hence I(f,,0) is well defined. We shall generalize this
formula to the multiparameter situation considered here.



(2.1) Definition. If there is no bifurcation from T, i. e. B = 0, then the local
fixed point index of f at T is defined as

I(f, T) := I(f|W) € w°(P)

where W C O is an open neighbourhood of T in O with W N Fiz(f) = T and I(f|W)
is the fixed point index of f|W in the sense of Dold [9] or [10].

(2.2) Theorem. If B C T is closed in P consider open neighbourhoods U, V' of
B in P such that clos(V) C U C T. (Such neighbourhoods ezist since P is normal as a
metric space.) Then

BI(f) = —i* o (7*) ' 0 6(I(fIn (U \ V), U\ V))
where o o
WO (U \ V)— ! (U, U \ V)——uw}(P,P \ V)——&' (P).

"%

7* is an excision tsomorphism.

PROOF: Since both I and BI are commutative we may assume that E = P x R"
and T = 0N P.

Claim: BI(f) is the image of 1 € w™(R",R" \ {0}) under the following sequence
of homomorphisms.

W™ (R™, R™ \ {0}) 20w (Bo, B1)—2—w" (U, U \ V) x (D™ \ {0}))
LB (g, U\ V) —— T(P)
Here
D" :={zeR" |z|| <1},
Bo :={(p,z) € 0: p€ U, 0< |z < p(p)} O\ 7,
B, :={(p,z) € Bo: peU\V}C O\ (TUF¥).
For later use we set
By :={(p,z) € 0: pe U\, |zl < 0(p)}.

©: T — RZ and p: (U, U\ V) x (D™ \ {0}) — (Bo, B1) are defined as in (1.1). For
notational convenience we do not distinguish w,_; (D" \ {0}) and w,_;(S""!). Thus
Tn_1 € wa_1(D"\ {0}). The last map in the above sequence is ¢* o & B ke

The proof of the above claim is an easy excision argument. The theorem is now a
consequence of the commutativity of the following diagram. (We write D™ for D" \{0}.)

wPRMRM\{0) <= W"'RU\{0}) > w"(R",R"\{0})

l(u—m' l(»—f:)‘ l(t—f:)‘
w"(Bz, B;) i w" 1(By) o w"(Bo, B1)

v e e

W(U\V) x (D" D") < W (U\V) x DY) D W ((O,U\V) x D)



|78 = [72ees

-1

WO(U \ V) =k WO(U\ V) £ wl(U,U\V)

Here A, € wp(D", D"\ {0}) corresponds to £,_1,i. e. E,_1 = dA,. The last
two squares commute according to Switzer [15], 13.56(v), (vi). Now

I(flx= 'O\ V),U\V) = (o* o (¢ = £2)* (1)) /An
by definition (cf. [9], (2.3), (2.14)). Together with the first claim the theorem follows.

(2.8) Corollary. Let fRx E — R x E C S* x E be a map over S* x P and
assume that the set B of bifurcation points is contained in | — R, R[X P and is closed in
S x P. Let f;: E — E be the part of f overt € R. Then

I, := I(f;, P) € &°(P), t > R,
and
L.=1{,P) t<—=R;

are well defined. If I, # I_ then BI(f) #0 € @'(S! x P).

PROOF: Apply Theorem (2.2) to U =R x P, V =| — R, R[x P and observe that
the kernel of

WO(U \ V)—2—w! (U,U \ V)——w!(S! x P,(S* x P)\ V)

is the diagonal in w®(U \ V) = w°(P) ® w°(P). Thus 6(I;,1_) # 0. Furthermore, the
restriction homomorphism w!(S! x P,S! x P\ V) — @!(S! x P) is injective since
w!(S! x P,S! x P\ V) = w!(S! x P,{oo} x P) and {oo} x P is a retract of S! x P
which implies that w°(S! x P) — w®({oo} x P) is surjective.

(2.4) Example. If P = S! consider

f+:8' x €—8' x €, (p,2) — (p,p—p- 2),
and
f-:8'x €—8' x €, (p,2) — (p,0).

Then I(f;) = 1 and I(f-) = 0 in @°(S') = Z/2Z. Only the first assertion requires
some work since we cannot use the Lefschetz-Hopf formula (6.18) of [10]. Instead we
observe that the map

S! - 50(2),
p o (2-p-2= (7 f24)(p2))
induces a generator of m; (SO (2)) = Z and hence the nonzero element
vf, =1€m(SO(n)) =Z/2Z, n > 3.
Now the J-homomorphism
J:my (8O(n)) — mpuyr(S™) = &°(SY)

is an isomorphism (cf. Adams [1]) and J(vy, ) is the fixed point index of f,. This can



be seen by using the Hopf construction.

Now consider a map f:R x ! x € — R x S! x C over R x S! such that
f(t,p,0) = (t,p,0). ¥ fir = fi for |t| big (controlling the fixed points during the
deformation) then Corollary (2.3) gives BI(f) # 0 € @' (S x §'). Thus there must
exist a global branch of fixed points bifurcating from R X S L

In all previous computations of the bifurcation index it was either assumed that
there is just one bifurcation point in a disc in the parameter space (compare (2], (8],
[12] and the references therein) or a more general situation has been reduced to that
case using the properties of the bifurcation index (cf. [6]). Theorem (2.2) provides a
different way of calculating BI.

3. Problems, Remarks

(3.1) If the domain O of f:0 — E contains the whole section P then the defi-
ning sequence of homomorphisms in Definition (1.2) factors through @™(R"). Conse-
quently, BI(f) = 0. In that case one can use a refined version as follows. Suppose one
knows that the set of bifurcation points is contained in a subset Q of P. Then one can
define BI(f,Q) € w!(P,P\ Q). For example, if P is a compact manifold with boun-
dary AP the bifurcation points should be restricted to P\ 9P, thus BI(f) € w!(P,8P).
Another variation for locally compact P is to replace P by its one point compactification.

(3.2) In [4] and [12] (possibly infinite-dimensional) Banach spaces P occur as pa-
rameter spaces. There one assumes the existence of a disc D! in a finite-dimensional
subspace of P with B N D' = {0}. Then one considers the bifurcation index of f re-
stricted to the part over D'. If it is different from O the bifurcating branch of solutions
has dimension at least dim P — [. This type of result has also been proved in (7]
where P is a finite-dimensional manifold. In addition, S'~! = dD' and B are linked,
i. e. the inclusion S!~! < P B is topologically nontrivial. It should be easy to replace
D! by more general subspaces A of P and look at A — P\ B. Nonlinear parameter
spaces have also been considered in [14] (finite CW-complexes, in particular compact
differentiable manifolds) and — in a continuation setting — in [5] (metric spaces).

(8.3) For applications it is necessary to replace R" by a normed linear space
and ENRp by ANRp. One has to approximate f, so one needs some compactness
conditions. In [13] Nussbaum uses the fixed point index to prove bifurcation into an
ANR X. He considers maps f:J x X — X which are strict set contractions on a
neighbourhood of the fixed point set. J is an open interval of reals. Of particular
importance is the case where X is a cone in a Banach space.

(8.4) Another problem (Dold) is to define BI(f) for maps f: M — M where M is
a manifold and f|[N = id|N on a submanifold N. This situation is different from the
one considered in this paper since M is not a space over N and f not a map over N.
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A Fixed Point Index Approach to some
Differential Equations

Dedicated to Professor Andrzej Granas
on the Occasion of his 60th Birthday

R.Bielawski and L.Gd6rniewicz

(Institute of Mathematics, University of Nicholas Copernicus,
Chopina 12/18, 87-100 Toruii, Poland)

The aim of this paper is to show that, using the fixed point index method for compact
maps as a tool, many types of differential equations with the right side depending on
the derivative can be reduced very easily to differential inclusions with right sides not
depending on derivative. It is shown in fact, that the fixed point theory for condensing-
type maps, which was used to obtain existence results or topological characterizations
of the set of solutions in such situations (cf. [14]) is not needed. We apply our method
to the following types of differential equations only, but some other applications are also
possible:

(i) ordinary differential equations of first or higher order (e.g., the satellite equation,
see [15]),

(i) hyperbolic differential equations,

(iii) elliptic differential equations.

We shall mention these in section 3. General statements needed for applications will
be given in section 2. This paper is a continuation of [2] and gives a generalization of
respective results in [1,3,13 and 4]. Finally, note that the class of maps for which we
are able to obtain an existence result is quite rich (see Theorem (2.7)).

1. Preliminaries. In this paper all topological spaces are assumed to be metric.
Let X,Y be two spaces and assume that for every « € X a nonempty subset p(x) of Y
is given; in this case we say that o : X — Y is a multivalued map. In what follows the
symbols ¢, 9, x are reserved for multivalued maps; singlevalued maps we shall denote
by f,9, v,

A multivalued map ¢ : X — Y is called upper sems continuous (lower sems continu-
ous) if for each open U C Y the set {z € X;p(z) C U} ({z € X;p(2) NU # 9}) is an
open subset of X. An upper semi continuous (lower semi continuous map) p: X =Y
we shall write shortly as u.s.c. (Ls.c.). A multivalued map ¢ : X — Y is called contin-
uous if it is both w.s.c. and Ls.c. It is evident that for ¢ = f a singlevalued map the
above three notions coincide. An u.s.c. map p : X — Y is called compact provided the
closure cl(p(X)) of p(X) = U{e(2);x € X} in Y is a compact set.

Let ©,9 : X — Y be two maps. We shall say that ¢ is a selector of ¢ (written
¥ C @), if for each x € X we have ¢(z) C p(x). For amap ¢ : X — X by Fix(p) we
shall denote the set of all fixed points of p,i.e.,

Fix(p) = {zr € X;z € p(2)}.
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We recommend [1,7,10] for details concerning multivalued maps. Let A be a subset of
X, then by §A we shall denote the boundary of A in X, by clA4 the closure of A in X
and by dimA the covering dimension of A (cf. [8]). It is well known (see [9]) that for a
compact set 4 we have: dim A = 0 if and only if 4 has an open-closed basis.

It immediately implies the following:

(1.1) Proposition. Let A be a compact subset of X such that dim4 = 0. Then
for every # € A and for every open neighbourhood U of z in X there exists an open
neighbourhood V C U of z in X such that VN A= 0.

2. General statements. In this section we shall present the topological material
needed in our applications to the theory of differential equations. Let X be a metric
absolute neighbourhood retract (written X € ANR) and let ¢ : X — X be a compact
map. Assume further that U is an open subset of X such that §U NFix(g) = @, then
(following [11]) we shall denote by i(g,U) the fixed point index of g with respect to U.

We shall start with the following:

(2.1) Proposition. Let X € ANR and let ¢ : X — X be a compact map. Assume
further that the following two conditions are satisfied:

(2.1.1) dimFix(g) = 0,

(2.1.2) there exists an open subset U C X such that U NFix(g) = ® and i(¢,U) # 0.
Then there exists a point z € Fix(g) for which we have:

(2.1.3) for every open neighbourhood U, of z in X there exists an open neighbourhood
V. of z in X such that: V, c U,, 6V, NFix(g) =0 and i(g,V;) # 0.

Proof. Let I' = {A c Fix(¢) N U; A is compact nonempty and for every open
neighbourhood W of A in X there is an open neighbourhood V of 4 in X which satisfies
the following three conditions: V ¢ W, 6V NFix(¢) = @ and ¢(g,V) # 0}.

It follows from (2.1.2) that T' is a nonempty family. We consider in I' the partial
order given by the inclusion between subsets of X. We are going to apply the famous
Kuratowski-Zorn Lemma (cf. [6]). To do it let us assume that {4; };; is a chaininT". We
put Ay = [{Ai;+ € I'}. To prove that 4y € I' assume that W is an open neighbourhood
of Ag in X. We claim that there is ¢ € I such that 4; C W. Indeed, if we assume on the
contrary, then we get a family B; = (X\W)NA,, i € I, of compact nonempty sets which
has nonempty compact intersection By. Then By € X \ W and By C A so we obtain
a contradiction and hence Ay € I'. Consequently, in view or Kuratowski-Zorn Lemma,
we get a minimal element 4, in I'. We claim that A, is a singleton. Let z € A,. It is
sufficient to prove that {2} €I'. Since A, €' we obtain an open neighbourhood U, of
A, in X with the following properties: U, C U, éU, NFix(¢g) = and i(g,U,) # 0. Let
W be an arbitrary open neighbourhood of z in X. Using (1.1) we can choose an open
neighbourhood U, of z in U, N W such that Fix(g) N 6U, = @. Since A, is a minimal
element of I' the compact set A, \ U, is not in I' and hence there exists an open set
V € U, such that (4. \U;) cV cU,, Fix(g) N6V =0, VNU, =9, i(9,V) =0 and
i(g,Us) = i(g,V UU,). Now from the additivity property of the fixed point index we
have

(g, U2) =i(g,Us) +i(g, V) # 0

and consequently (g, U;) # 0. It implies that {z} € I' and the proof is complete.




B

Now, we are going to consider a more general situation. Namely, let Y be a locally
arcwise connected space, X € ANR and let f: Y x X — X be a compact map. In what
follows we shall assume that f satisfies the following condition:

(2.2) Yy € Y3U, : Uy is open in X and i(fy,Uy) # 0,
where f, : X — X is given by the formula f,(z) = f(y,«) for every # € X. Observe that
in particular, if X is an absolute retract, then (2.2) holds automatically. We associate
with a map f: Y x X — X satisfying the above conditions the following multivalued
map:

pr:Y - X, ps(y) =Fix(fy).

Then from (2.2) follows that @ is well defined. Moreover, we get:

(2.3) Proposition. Under all of the above assumptions the map s : ¥ — X is
u.s.c.

Let us remark that, in general, ¢ s is not a L.s.c. map. Below we would like to formulate
a sufficient condition which guarantees that o, has a l.s.c. selector. To get it we shall
add one more assumption. Namely, we assume that f satisfies the following condition:

(2.4) Vy € Y : dimFix(fy) = 0.

Now, in view of (2.2) and (2.4), we are able to define the map ¢ : ¥ — X by putting
Y1 (y) = cl{z € Fix(fy); for z condition (2.1.3) is satisfied}, for every y € Y.

We prove the following:

(2.5) Theorem. Under all of the above assumptions we have:

(2.5.1) ¢y is a selector of ¢y,

(2.5.2) 9y is a Ls.c. map.

Proof. Since (2.5.1) follows immediately from the definition we shall prove (2.5.2).
To do it we let:

ng:Y - X, ny(y) ={z €Fix(fy); = satisfies (2.1.3)}.

For the proof it is sufficient to show that 5 is 1.s.c. Let U be an open subset of X and let
Yo €Y be a point such that s (yo)NU # 0. Assume further that zy € 9;(yo)NU. Then
there exists an open neighbourhood V of zy in X such that V c U and i(fy,,V) # 0.
Since oy is an u.s.c. map and Y is locally arcwise connected we can find an open arcwise
connected W in Y such that yo € W and for every y € W we have:

(*) Fix(f,) N6V = 0.

Let y € W and let o : [0,1] — W be an arc joining yo with y, i.e., o(0) = yo and
o(1) = y. We define a homotopy & : [0,1] X V — X by putting: h(t,z) = f(o(t),x).
Then it follows form (*) that h is a well defined homotopy joining f,, with f, and hence
we get: i(fyo,V) = ¢(fy,V) # 0; so Fix(fy) NV # @ and our assertion follows from
(2.1).

(2.6) Remark. Let us remark that the above results remain true for admissible
multivalued maps (cf. [7] and [10]); proofs are completely analogous.

Observe that condition (2.4) is quite restrictive. Therefore it is interesting to char-
acterize the topological structure of all mappings satisfying (2.4). We shall do it in the



