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INTRODUCTION

The present volume contains the Proceedings of the Congress on «p-adic Analysis» held at Trento from
May 28 to June 3, 1989.

The idea of organizing a meeting on this subject in Italy was first promoted by Philippe Robba, whose
visits to Italy were always welcomed by his Italian colleagues for both the warmth and the illumination
which he brought with him. He died prematurely on October 12, 1988, leaving a profound sense of loss
in the world of p-adic analysis. We believe we have expressed the feelings of that whole community by
dedicating this Meeting to him. At the opening of the Conference, Elhanan Motzkin commemorated
Robba’s exceptional character in a touching reminiscence, that will appear in the Seminars of the Groupe
d’Etude d’ Analyse Ultramétrique, of which Robba was one of the founders.

The conference was organized by the Centro Internazionale per la Ricerca Matematica (CIRM), of
Trento, and was also sponsored by the Dipartimento di Matematica Pura e Applicata of the University of
Padova. We are grateful to both these institutions.

We wish to express our gratitude in particular to Mr. Augusto Micheletti for his indefatigable efforts on

behalf of the conference.

F. Baldassarri, S. Bosch, B. Dwork



Philippe Robba

March 18, 1941 - October 12, 1988
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Work of Philippe Robba

B. Dwork
Department of Mathematics

Princeton University

Among the subjects studied by Philippe Robba were:

. domains of analyticity
. p—adic Mittag-Lefller

. index of differential operators

> W N

. factorization of differential operators corresponding to radii of convergence and to
order of logarithmic growth

. effective estimates for logarithmic growth

. weak frobenius (dimension one, precursor of work of Christol)

. L-functions and exponential sums

0 -1 O O

. application of p—adic methods to questions of irrationality and transcendence.

Robba’s work was so involved with the p-adic theory of ordinary differential equations that
it may be useful in an article devoted to his work to give a survey of the present status of
this subject.

Let K be a field of characteristic zero, complete under a rank one valuation extending the
ordinary p-adic valuation of Q.

Let E be the completion of K(X) under the gauss norm. Elements of E are admissible
(resp: superadmissible) if they are analytic elements on the complement of a finite set of
residue classes (resp: a finite set of disks of local radius strictly less than unity).

A p-adic Liouville number is an element a € Z, (necessarily transcendental over @) such

that either

liminf |a —m|/™ < 1
m—-+oo

or

liminf |a + m|'/™ < 1.
m-—o0

These conditions are not equivalent and for the operator L = 17% — «a the first condition
gives difficulties at x = 0 while the second gives difficulties at z = oo.

We recall the notion of a generic point ¢ in a universal domain 2 which is algebraically
closed and complete relative to a valuation extending that of K. We insist that |t| = 1 and
the residue class of ¢ be transcendental over the residue class field of K. The disks and annuli

appearing in our theory involve subsets of (2.



Let

Ao = {€ € K[[z]] | € converges in D(0,17)}

By = {£ € Ao | € is bounded on D(0,17)}

Ai(r)={€ € K—(t)[[z —t]] | £ converges in D(0,77)}

WP = {€ = LA (z — a)’ € K(a) [[1‘—(1”|SUPAT‘J/1+]) < oo}

The theory started in 1937 with Lutz’s solution of the Cauchy problem:
Let f(z,y) be an element of K[[X,Y7,...,Y,]]" converging on a polydisk in n + 1 space.
Then the equation

"’J—f< )

Y(0)=0

has a unique solution in (zK[[z]])" converging on a non-trivial disk about the origin.

Lutz estimated the radius of convergence and applied it to the study of rational points on
elliptic curves.

Our own interest in 2F1(2, 2,1 z) dates to the late 1950’s and involved the (long unpub-
lished) calculation of Tate’s constant (cf. Dwork 1987). Our interest in the general theory
of linear equations goes back to our study of the variation of cohomology of hypersurfaces
(Dwork 1964, 66). Clark’s work on linear equations at a singular point appeared in 1966.
It was here that the question of p-adic Liouville exponents was first discussed. Adolphson
[1976a, 1976b] investigated symmetric powers of 2F1(2, 2,1, z) and studied index in the early
1970’s. Robba’s work started in 1974.

We will restrict our attention to linear equations but I cannot refrain from mentioning the
splendid result of Sibuya and Sperber [1981].

THEOREM. Let yo € K[[X]] be a formal solution of a non-linear polynomial differential
equation, P(z,y,y',...,y™) =0, where P is a polynomial in n+ 2 variables with coefficients

in K. Substituting y = yo + u we obtain the tangent linear operator

oP BP or .
L(u) = 3_y(x’y 0)u 0 s 2 Yo)Du + - W(r,yo)D"u,

defined over K[[X]]. If the exponents of L at z = 0 are p-adically non-Liouville then vg has

a nontrivial p—adic radius of convergence.

The theory of ordinary p-adic differential equations addresses such questions as:

1. What are the radii of formal local solutions?
2. How do solutions grow as the boundary of the circle of convergence is reached?
3. What are the filtrations of the solution spaces relative to the growth and radii of

convergence?
4. Index.



I. Order of growth

The main result of Robba on this question does not directly refer to differential equations.

THEOREM. (Robba 1980b) Let uy,...un € Ap and let the wronskian

Uy Un
! !

w = Uy §us U,
ugn—l) o usln—l)
never vanish in D(0,17). Then each element v = Sa,z® in the K space spanned by uj,...un

satisfies the condition

las| < Sup |ai| - {s,n—1}
0<i<n—1

where

{s,n—=1}=1/Inf|z122- - zn-1] (Ss"”l),
the inf being over all 1 < z; < 20 < -+ < z,—1 < s.

This type of logarithmic estimate first appeared in the study of eigenvectors in our dual
theory [Dwork 1964].

This type of estimate is a natural consequence of a strong Frobenius structure [Dwork,
1969). For example if ¥ = Ya ,2° € K[[X]]* and if for some A € K*, we have Ay (z?) =
Xy (z) where A € M,(By) and is bounded by unity on D(0,17) then y must converge in
D(0,17) and for s > 1

[as| < aol|A|= '8/ to8 7],

More recently effective bounds for solutions at a regular singular point have been found by
Adolphson, et al. 1982 and by Christol,Dwork 1990, the former if the local monodromy is

nilpotent of maximal rank, the second without the restriction of maximality of rank.

II. Filtration by growth and radius of convergence

For the second type of filtration we have

THEOREM. (Robba 1977a). Let L be a differential operator of order n with coefficients in
K(X) (or more generally with superadmissible coefficients). For r € (0,1], Ker(L, A((r))

defines a monic factor, Ly, of L in E[D] whose coefficients are indeed superadmisible.

In the case of a Frobenius structure, filtration by growth should correspond to filtration by

magnitude of eigenvalue.

THEOREM. (Robba 1975a) Let L € E[D], dim Ker(L, A;) = orderL = n. Then this kernel
lies in W}~ and for each 8 € [0,n — 1], Ker(L,W,"?) determines a monic factor Lg of L
in E[D].

The great contribution of Robba to these questions was to view R = E[D] as a subspace of
the Banach space C(W,r‘ﬂ, VV{'ﬁ). Thus he considered RL, the completion in R of the ideal



RL under the Banach space norm. This ideal has a generator shown by Robba to be the
factor of L corresponding to Ker(L, W',r‘ﬂ).

There are a number of unanswered questions.

1. If the coefficients of L (in this last theorem) are admissible (or even superadmissible)
then the coefficients of Lg need not be superadmissible. But are they admissible? Conjecture:
Yes.

2. Let L have coefficients which are analytic elements on D(0,17). We may construct a

»5—5) C

Newton polygon for L at t whose slopes are the exceptional values 3 such that Ker(L, W,1 =

Ker(L, W,l’ﬂ-") for an infinite sequence of ¢ — 0, and whose vertices have abscissas given by

lim, .o dim Ker(L, Wll’ﬁ_e) for # exceptional. We may construct a similar polygon at z = 0.

CONIJECTURE. The polygon at ¢ = 0 lies above the polygon at = = t.

It is known (Dwork 1973, Robba 1975a)

dim Ker(L, W,"”) > dim Ker(L, W, "°)
dim Ker(L, A,(1)) > 1 implies dim ker(L, W,"*) > 1.

A geometric example of the filtration by growth is given by 2Fi(3,3,1,z). This was
analyzed (Dwork 1969, 1971) in two ways:
(a) by directly demonstrating the admissibility of F(X)/F(X)® via congruences associated

with the p-adic gamma function

(b) by constructing a unit root crystal from the given superadmissible two dimensional

crystal.

For ;Fi(a,b,1,z) Robba [1976(b)] gave a treatment based on a weak form of the Hahn
Banach theorem. He avoided all references to Frobenius structure.

Dwork (1983) discussed 2 Fj(a, b, ¢, z) on the basis of Frobenius structure.

The nature of the factorization subject to geometric type hypotheses have been investi-
gated for hypersurfaces, (Dwork 1973) for kloosterman sums (Adolphson, Sperber 1984) and
hyperkloosterman sums (Sperber 1980, Sibuya, Sperber 1985).

Subject to geometric type hypotheses, Sperber and the author [Dwork, Sperber 1990]
have found the coefficients of the factor corresponding to the bounded solutions to have
mittag-lefler decompositions in which the components are of the form ¥ A;/(z — a)’ with
ord A; > klog(1l + j) for some k > 0. This has played a role in investigating the unit root

zeta function.

III. Index

This question had great interest for Robba. At least four of his articles mention index
in the title while others are devoted to applications of index. In his early work (1975, 76)
there were no indications of applications but these appeared subsequently (1982c). His 1984
Asterisque article was dominated by the application to one dimensional cohomology and by

1986 he began studying symmetric powers of the Bessel differential equation.



Both Robba and Adolphson used patching arguments to reduce the question of index to the
case of L € K[X][D] and to the calculation of either Ao/L.Ao or Bo/LBy. For the applications
it made no difference which one was finite. We consider only this elementary form.

For his application Adolphson was able to reduce to the case of order one and more explicitly
to X H% —a,a€ Q.

Robba [1975a] showed

If ker(L, A¢(1)) = 0 then x(L, A¢(1)) = x(L, Bo(1)).

This result is of interest as it seems to capture the essential point of dagger type cohomology
involving over convergent series. Unfortunately this has not been extended to the case of
several variables.

Of course if order L = dim Ker(L, A¢(1)) then L has index as operator on A (but not on
By). In particular, by the transfer principle:

If L has no singularity on D(0,17) and if order L = dim(KerL, A;(1)) then L has index on
Ao(1).

By means of Christol’s transfer theorem [Christol 1984] we may extend this last result to
the case in which L has just one regular singularity in D(0,1~) with non-Liouville exponents.

The operator (Robba 1977a) L = p(1 — z)D? — D — a where liminf |a — m|'/™ = 41,
liminf |a + m|/™ < 1 is an example of an operator with no singularity in D(0,17) but
without index in Ag.

For operators of the first order L = aD + b, a,b € K[X], Robba (1985a) gave a beautiful

formula

d _ _
(dlogrlogp(L’r)) =x"(L,r)+ord (a,r)

where

x~ = dim Ker — dim cokernel for L as operator on H(D(0,17))
p(L,r) = radius of convergence of the solution at t,,
ord™(a,r) = abcissa of point of contact of the Newton polygon of a with the

line of support of slope — logr/logp,

ie. if a=YXA,X", v minimal such that |a|o(r) = |4,|r" then v = ord™ (a,r).

This formula showed how the Turritin form may be used to compute the index if the origin
is an irregular singular point. It gives further motivation for extending Christol’s transfer
theorem to the case of irregular singular points. This index need not be equal to the algebraic
index.

In view of the failure of crystalline cohomology to provide a proof finiteness of cohomology,
the question of finiteness of index in the sense of this section must still be viewed as pertinent.
It is our opinion that the critical case is that in which D(0,17) contains more than one regular
singularity and order L = dim(Ker L, A,(1)).

We mention a few aspects of Robba’s mathematical personality.



He was a very clear expositor and did much to popularize p-adic analysis. Together with
Amice and Escassut he organized the GEAU. He gave a total of 24 written exposes, three in

the first year, five in the second year.

He had many beautiful ideas. One was his abstract construction of the generic disk (1977¢),
a second was his explanation of Turrittin’s theorem by means of the valuation polygon
(1980a), a third was his method for removal of apparent singularities (cf. Christol 1981,
Theorem 8.3), a fourth was his construction of a transcendental 7, ordw = 1/(p — 1) which

had the property that ord m(z — z?) converges for ordz > —1/p.
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1 Introduction

Let k be the finite field of ¢ = p® elements, f = ¥;c;a;27 € k[z1,... 20, (21 2,) 7]
where 0 < 7 < n, ¥ :k — Q((,)* be a nontrivial additive character, and x1,...,Xxr :
k* — Q({4-1)* be multiplicative characters. Define

Sixi-oxnf) = 20 x(@) - xe(2)¥(f(2)). (1)

xe(kx)rxkn—r

The first problem we consider in this article is:

Problem 1: Find a p-adic estimate for 5.

Let k., be the extension of k of degree m. We can define for each m an exponential
sum related to (1):

SnGaisxeo )= 5 (TT V() U(Tran( (), 2)

ZE(kx)'Xk"_' 1=1
where T'r,,, : k,, — k is the trace map and N,, : k,, — k is the norm map. This data
can be encapsulated in an L-function:

e o]

LGt 520 £30) = 50 (X2 Sty 00 ) )- ®)

m=1

The following result is well-known:

Theorem 1 (Dwork, Grothendieck) L(x1,...,Xr, f;t) is a rational function, 1. e.,
Hﬁnitc(l - ait)
Hﬁnitc(l - ﬂ]t)
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L(Xh"'axr’f;t): (4)




