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Foreword

Bob Colwell, R & E Colwell & Assoc. Inc.

by traveling around in it or you can study it indirectly by leaving it. The first
method yields facts and insights directly in context, and the second by contrast.

Our tradition in computer engineering has been to seldom leave our neighborhood.
If you want to learn about operating systems, you read an OS book. For multiprocessor
systems, you get a book that maps out the MP space.

The book you are holding in your hands can serve admirably in that direct sense. If
the technology you are working on is associated with VLIWs or “embedded computing,”
clearly it is imperative that you read this book.

But what pleasantly surprised me was how useful this book is, even if one’s work
is not VLIW-related or has no obvious relationship to embedded computing. I had long
felt it was time for Josh Fisher to write his magnum opus on VLIWSs, so when I first heard
that he and his coauthors were working on a book with VLIW in the title I naturally and
enthusiastically assumed this was it. Then I heard the words “embedded computing”
were also in the title and felt considerable uncertainty, having spent most of my profes-
sional career in the general-purpose computing arena. I thought embedded computing
was interesting, but mostly in the same sense that studying cosmology was interesting:
intellectually challenging, but what does it have to do with me?

I should have known better. I don’t think Josh Fisher can write boring text. He
doesn’t know how. (I still consider his “Very Long Instruction Word Architectures and
the ELI-512” paper from ISCA-10 to be the finest conference publication I have ever read.)
And he seems to have either found like-minded coauthors in Faraboschi and Young or
has taught them well, because Embedded Computing: A VLIW Approach to Architecture,
Tools and Compilers is enthralling in its clarity and exhilarating in its scope. If you are
involved in computer system design or programming, you must still read this book,
because it will take you to places where the views are spectacular, including those
looking over to where you usually live. You don’t necessarily have to agree with every
point the authors make, but you will understand what they are trying to say, and they
will make you think,

One of the best legacies of the classic Hennessy and Patterson computer architecture
textbooks is that the success of their format and style has encouraged more books like
theirs. In Embedded Computing: A VLIW Approach to Architecture, Tools and Compil-
ers, you will find the pitfalls, controversies, and occasional opinion sidebars that made

r I Y here are two ways to learn more about your country: you can study it directly
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Foreword

H&P such a joy toread. This kind of technical exposition is like vulcanology done while
standing on an active volcano. Look over there, and see molten lava running under a
new fissure in the rocks. Feel the heat; it commands your full attention. It's immersive,
it’s interesting, and it’s immediate. If your Vibram soles start melting, it’s still worth it.
You probably needed new shoes anyway.

I first met Jash when T was a grad student at Carnegie-Mellon in 1982. He spent an
hour earnestly describing to me how a sufficiently talented compiler could in principle
find enough parallelism, via a technique he called trace scheduling, to keep a really
wild-looking hardware engine busy. The compiler would speculatively move code all
over the place, and then invent more code to fix up what it got wrong. I thought to myself
“So this is what a lunatic looks like up close. I hope he’s not dangerous.” Two years later
Tjoined him at Multiflow and learned more in the next five years than I ever have, before
or since.

It was an honor to review an early draft of this book, and I was thrilled to be asked to
contribute this foreword. As the book makes clear, general-purpose computing has tra-
ditionally gotten the glory, while embedded computing quietly keeps our infrastructure
running. This is probably just a sign of the immaturity of the general-purpose com-
puting environment (even though we “nonembedded” types don’t like to admit that).
With general-purpose computers, people “use the computer” to do something. But with
embedded computers, people accomplish some task, blithely and happily unaware that
there’s a computer involved. Indeed, if they had to be conscious of the computer, their
embedded computers would have already failed: antilock brakes and engine controllers,
for instance. General-purpose CPUs have a few microarchitecture performance tricks to
show their embedded brethren, but the embedded space has much more to teach the
general computing folks about the bigger picture: total cost of ownership, who lives in
the adjacent neighborhoods, and what they need for all to live harmoniously. This book
is a wondertful contribution toward that evolution.

Bob Colwell
June 17, 2004



Preface

elcome to our book. We hope you enjoy reading it as much as we have enjoyed
W writing it. The title of this book contains two major keywords: embedded and

VLIW (very long instruction word). Historically, the embedded computing
community has rarely been related to the VLIW community. Technology is removing this
separation, however. High-performance techniques such as VLIW that seemed too expen-
sive for embedded designs have recently become both feasible and popular. This change
is bringing in a new age of embedded computing design, in which a high-performance
processor is central. More and more, the traditional elements of nonprogrammable com-
ponents, peripherals, interconnects, and buses must be seen in a computing-centric
light. Embedded computing designers must design systems that unify these elements
with high-performance processor architectures, microarchitectures, and compilers, as
well as with the compilation tools, debuggers, and simulators needed for application
development.

Since this is a book about embedded computing, we define and explore that world
in general, but with the strongest emphasis on the processing aspects. Then, within this
new world of embedded, we show how the VLIW design philosophy matches the goals
and constraints well. We hope we have done this in a way that clearly and systematically
explains the unique problems in the embedded domain, while remaining approachable
to those with a general background in architecture and compilation. Conversely, we
also need to explain the VLIW approach and its implications and to point out the ways
in which VLIW, as contrasted with other high-performance architectural techniques, is
uniquely suited to the embedded world.

We think this book fills a hole in the current literature. A number of current
and upcoming books cover embedded computing, but few of them take the combined
hardware—software systems approach we do. While the embedded computing and digital
signal processing (DSP) worlds seem exotic to those with general-purpose backgrounds,
they remain computing. Much is common between general-purpose and embedded
techniques, and after showing what is common between them, we can focus on the
differences. In addition, there is no standard reference on the VLIW approach. Such a
book has been needed for at least a decade, and we believe that a book explaining the
VLIW design philosophy has value today. This book should be useful to engineers and
designers in industry, as well as suitable as a textbook for courses that aim at seniors or
first-year graduate students.

While considering the mission of our book, we came up with three different possible
books on the spectrum from VLIW to embedded. The first is the previously mentioned
book, purely about VLIW. The second is a book about high-performance approaches

xxvii
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to the embedded domain, with equal emphasis on VLIW, Superscalar, digital signal
processor (DSP), micro-SIMD (Single Instruction Multiple Data), and vector techniques.
Our book (the third option) strikes a balance: it focuses on the VLIW approach to the
embedded domain. This means we give lighter treatment to the alternative approaches
but spend additional effort on drawing the connections between VLIW and embedded.
However, large parts of the information in our book overlap material that would go into
the other two, and we think of this book as valuable for those with a strong interest in
embedded computing but only a little interest in VLIW, and vice versa.

Along the way, we have tried to present our particularly idiosyncratic views of
embedded, VLIW, and other high-performance architectural techniques. Most of the
time, we hope we have impartially presented facts. However, these topics would be
terribly dry and boring if we removed all controversy. VLIW has become a significant
force in embedded processing and, as we make clear, there are technical and marketing
reasons for this trend to continue. We will wear our biases on our sleeves (if you can’t
tell from the title, we think VLIW is the correct hammer for the embedded nail), but we
hope to be honest about these biases in areas that remain unresolved.

Content and Structure

When we first wrote the outline for this book, the chapters fell into three major categories:
hardware, software, and applications. Thus, the outline of the book correspondingly
had three major parts. As we have written and rewritten, the organization has changed,
pieces have migrated from one chapter to another, and the clean three-part organization
has broken down into a set of chapters that only roughly matches the original tripartite
structure. The unfortunate truth of modern computer architecture is that one cannot
consider any of hardware, software, or applications by themselves.

This book really has two introductory chapters. Chapter 1 describes the world of
embedded processing. It defines embedded processing, provides examples of the various
types of embedded processors, describes application domains in which embedded cores
are deployed, draws distinctions between the embedded and general-purpose domains,
and talks about the marketplace for embedded devices. The second introductory chapter,
Chapter 2, defines instruction-level parallelism (ILP), the primary technique for extract-
ing performance in many modern architectural styles, and describes how compilation is
crucial to any ILP-oriented processor design. Chapter 2 also describes the notion of an
architectural style or design philosophy, of which VLIW is one example. Last, Chapter 2
describes how technology has evolved so that VLIW and embedded, once vastly separate
domains, are now quite suited to each other.

Chapters 3 through 5 constitute the purely “hardware”-related part of the book.
Chapter 3 describes what we mean when we say architecture or instruction-set archi-
tecture (ISA), defines what a VLIW ISA looks like, and describes in particular how
VLIW architectures have been built for embedded applications. Chapter 3 also describes
instruction set encoding at two levels. From a high-level perspective, Chapter 3 revisits
the notion of design philosophy and architectural style with respect to how that style
affects the way operations and instructions are encoded under each design philosophy.
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At a detailed level, Chapter 3 describes the particular issues associated with VLIW
operation and instruction encoding.

Chapter 4 might be seen as a continuation of the previous chapter, but instead of
describing ISA design as a whole (with a view across various ISA styles), Chapter 4
examines the hardware 'structures (such as the datapath, memory, register files, and
control units) necessary to all modern processors. Chapter 4 pays particular attention
to how these structures differ in the embedded domain from their general-purpose
counterparts.

The next chapter explores microarchitecture, the implementation of techniques
within a given ISA. Chapter 5 can be seen as largely paralleling Chapter 4 in subject
matter, but it considers how to implement each piece of functionality rather than how
to specify that work be done within an ISA. Chapter 5 is informed by the technological
constraints of modern design; that is, wires are expensive, whereas transitors are cheap.
The chapter also (very briefly) considers power-related technological concerns.

Chapter 6 fits poorly into either the hardware and software categories, as both topics
occur in each of its sections. Chapter 6 begins with a description of how a system-on-a-
chip (SoC) is designed. Most modern embedded systems today are designed using the
SoC methodology. Chapter 6 continues with how processor cores integrate with SoCs.
Then it describes simulation methodologies for processor cores, followed by simulation
techniques for entire systems. Last, Chapter 6 describes validation and verification of
simulators and their systems. It might be best to view Chapter 6 as a bridge between
the hardware and software areas, or perhaps its integration of the two serves as a good
illustration of the complexities involved in building hardware/software systems.

The next three chapters emphasize the software area, although reading them will
make it clear that they are infused with hardware-related topics in a number of ways.
Chapter 7 describes the entire toolchain: the suite of software programs used to analyze,
design, and build the software of an embedded system. Chapter 7 also describes anumber
of embedded- and DSP-specific code transformations.

Chapter 8 describes a subset of the compiler optimizations and transformations in an
industrial-strength ILP-oriented compiler. This book is nota compiler textbook. Our goal
in this chapter is to paint a balanced picture of the suite of optimizations — including
their uses, complexities, and interactions — so that system designers will understand
the nature of compilation-related issues, and so that compiler designers will know where
else to look.

Chapter 9 covers a broad range of topics that often fall between the cracks of tra-
ditional topics, but are nonetheless important to building a working system. Chapter 9
details issues about exceptions, application binary interfaces (ABIs), code compression,
operating systems (including embedded and real-time variants), and multiprocessing.
Many of these topics have a strong software component to them, but each also interacts
strongly with hardware structures that support the software functionality.

The last two chapters focus on applications. Chapter 10 begins by discussing
programming languages for embedded applications, and then moves on to perfor-
marnce, benchmarks, and tuning. Then it continues to scalability and customizability
in embedded architectures, and finishes with detail about customizable processors.
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Chapter 11 visits a number of embedded applications at a variety of levels of detail.
We spend the most time on digital printing and imaging, and telecommunications, and
less time on other areas, such as autometive, network processing, and disk drives.

While writing this book, it became clear that there are a large number of terms
with overlapping and conflicting meanings in this field. For example, instruction can
mean operation, bundle, parallel issue group, or parallel execution group to different
subcommunities. Wherever possible, we use the terms as they are used in the architecture
field’s dominant textbook, John Hennessy and Dave Patterson’s Computer Architecture:
A Quantitative Approach. The Glossary lists alternate definitions and synonyms, and
indicates which terms we intend to use consistently.

The VEX (VLIW Example) Computing System

Lest we be accused of writing an armchair textbook (like those scientists of the nine-
teenth century who deduced everything from first principles), our book ships with an
embedded-oriented VLIW development system. We call this system VEX, for “VLIW
Example.” We hope it is even more useful to our readers than its textbook ancestors,
MIX and DLX, were for their readers. VEX is based on production tools used at HP
Lahs and other laboratories. It is a piece of real-world VLIW processor technology, albeit
simplified for instructional use.

VEX is intended for experimental use. It includes a number of simulators, and
its tools allow hardware reconfiguration and both manual and automated design-space
exploration. Code, documentation, and samples can be downloaded from the book’s
Web site at http://www.vliw.org/book. VEX examples and exercises occur throughout
the book. The Appendix describes the VEX instruction set architecture and tool chain.

Audience

We assume a basic knowledge of computer architecture concepts, as might be given by
some industrial experience or a first undergraduate course in architecture. This implies
that you know the basic techniques of pipelining and caching, and that the idea of an
instruction set is familiar. It helps but is not a requirement that you have some back-
ground in compilation, or at least that you believe an optimizing compiler might be
useful in producing fast code for modern machines. For reasons of space, we touch on
those fundamentals related to this text and for more basic information refer you to more
basic architecture and compilation textbooks. Patterson and Hennessy’s undergraduate
architecture textbook, Computer Organization and Design, and Appel’s polymorphic set
of undergraduate compiler books, Modern Compiler Implementation in C, Java, and ML
are fine places to start.

There are four likely types of readers of our book. For those trying to bridge the
embedded and high-performance communities, we believe this book will help. Designers
of general-purpose systems interested in embedded issues should find this book a useful
introduction to a new area. Conversely, those who work with existing embedded and/or
DSP designs but would like to understand more about high-performance computing in
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general, and VLIW in particular (as these technologies become a central force in the
embedded domain) are also part of our audience. Third, the book should serve well as a
general reference on all aspects of the VLIW design style, embedded or general-purpose.
Last, this book should be usable in a senior undergraduate or graduate-level computer
architecture course. It could be the main textbook in an embedded-specific course, and
it could be used to supplement a mainstream computer architecture text.

Cross-cutting Topics

From the chapter organization of our book, you can see that we have organized it horizon-
tally, in effect by different traditional layers between fields: hardware versus software,
with various chapters dealing with issues within the hardware area (such as ISA, micro-
architecture, and SoC). However, some (“vertical”} topics cut across multiple layers,
making them difficult to explain in a single place, and unfortunately necessitating for-
ward references. These topics include clustering, encoding and fetching, memory access,
branch architecture, predication, and multiprocessing and multithreading. This section
points out where the cross-cutting topic threads can be found, so that readers can follow
a single thread through multiple layers.

Clusters, or groupings of register files and functional units with complete con-
nectivity and bypassing, are described from an instruction-set encoding perspective in
Section 3.5, “VLIW Encoding,” as a structure in hardware design in Section 4.2, “Regis-
ters and Clusters,” with respect to branches in Section 4.4, “Branch Architecture,” from
an implementation perspective in Section 5.1, “Register File Design,” as a compiler target
in Section 8.2, “Scheduling,” and with respect to scalability in Section 10.3, “Scalability
and Customizability.”

Encoding and its dual problem of decoding occur as general topics in Chapters 3
and 5. However, the specific physical issue of dispatching operations to clusters and
functional units is treated more specifically in Sections 3.5, “VLIW Encoding” and
Section 5.3 “VLIW Fetch, Sequencing and Decoding.” There are also correspondingly
detailed discussions of encoding and ISA extensions in Sections 3.6, “Encoding and
Instruction Set Extensions” and Section 5.3 “VLIW Fetch, Sequencing and Decoding.”

The architectural view of predication is introduced in Section 4.5.2, “Predication.”
Microarchitectural support for predication, and in particular its effect on the bypass
network, is described in Section 5.4.4, “Predication and Selects.” Compiler support
for predication is discussed throughout Chapter 8, and in particular appears in Section
8.2.1, “Acyclic Region Types and Shapes,” in Section 8.2.5, “Loop Scheduling,” and in
Section 8.4.2, “Predicated Execution.”

Multiprocessing, or using multiple processor cores (either physical or virtual) in a
single system, is discussed as a pure memory-wiring problem in Section 5.5.4, “Memories
in Mutliprocessor Systems,” with respect to SoC design in Section 6.2.2, “Multiprocess-
ing on a chip,” and with respect to the run-time system in Sections 9.4.3, “Multiple
Flows of Control” and Section 9.5, “Multiprocessing and Multithreading.”
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How to Read This Book

The most obvious reading advice is to read the book from cover to cover, and then read
it again. This is not particularly useful advice, and thus the following outlines how we
think various types of readers might approach the book.

To use this book as the main text in a senior or graduate course, we recommend
using each chapter in order. The other possibility would be to jump immediately to the
software section after a prerequisite in hardware from another course. If the book is sup-
plementary material to another architecture or compilation textbook, various chapters
(e.g., those on microarchitecture, simulation, and application analysis) will be especially
appropriate as selective reading.

If you already know a lot about VLIWSs, much of the introductory chapter on VLIWs
(Chapter 2) and most of the compiler details in Chapters 7 and 8 will be familiar. We
recommend focusing on Chapters 3 through 5 (on ISA, structure, and microarchitecture,
respectively), and also scanning for topics that are unique to embedded systems. The
information about other parts of the development toolchain in Chapter 7 will still be
relevant, and the application-related chapters (10 and 11) will be relevant in any case.

If you already work in an embedded or DSP-related field, the embedded-specific
parts of the hardware-oriented chapters (3 through 5) will be familiar to you, and
some or all of the application examples in Chapter 11 will be familiar. Depending on
your specialization, the SoC part of Chapter 6 may be familiar, but the simulation and
verification parts of that chapter will be especially valuable. Pay close attention to the
importance of ILP compilation and the pitfalls associated with compilers, covered in
Chapters 7 and 8.

If you have a general-purpose architecture background, many parts of Chapters 3
through 5 will be familiar, as will the sections on the software development toolchain
in Chapter 7. Try reading them, and skim where it seems appropriate. Parts of Chapter 8
(on compilation) may be skimmed, depending on your particular expertise. The final
chapter, dealing with application examples, pulls together many of the principles of the
book, so they’re worth spending the time to read.

We greatly admire the textbooks of Dave Patterson and John Hennessey, and we
adopted some of their organizational ideas. Like them, we include sidebars on “fallacies”
and “pitfalls.” We also added sidebars we call “controversies.” These comment on issues
too unsettled to fall into one of the former categories. Our equivalents of their “Putting
It All Together” sections have been grouped in Chapter 11. These application examples
play the same role in our book that example instruction set architectures such as MIPS,
the Intel x86, the DEC VAX, and the IBM 360/370 play in Hennessy and Patterson [2004].

Because our book emphasizes embedded processing, there are sections and sidebars
that focus on “embedded-specific topics.” As in general-purpose work, performance
remains a central theme, but the embedded world adds additional optimization goals
for power/heat, space/size, and cost. Each of these topics receives special emphasis in
dedicated sections.

The book does not cover the entire space of embedded systems and tries to remain
within a rather fuzzy set of boundaries. On the hardware and modeling side, we never
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descend below the architecture and microarchitecture level, and only provide pointers
to relevant literature on ASIC design, CAD tools, logic design techniques, synthesis, ver-
ification, and modeling languages. Although reconfigurable computing is of increasing
importance in the embedded domain, of necessity we give it less time than it deserves.
In the chapters dedicated to compiler technology, we focus largely on VLIW-specific and
embedded-specific techniques for regular architectures. For example, we do not cover
front-end-related issues (lexical analysis, parsing, and languages) nor “traditional” scalar
optimizations, both of which can be found in the abundant compiler literature. When
talking about system software and simulation, our boundary is the operating system,
whose role we discuss but whose technology we only skim (this also applies to program-
ming languages). We spend very little of the book discussing real time. Finally, in the
application sections, we cover only the most relevant aspects of some of the underlying
algorithms, but always with an eye to their computing requirements and the interaction
with the rest of the system.

Each chapter is accompanied by a set of exercises. Following widespread practice,
especially difficult exercises are marked with chili pepper symbols. A single .# means
that an exercise requires some materials not included in this book. Two ## indicate
that the exercise is something of a project in scope. Three #.# .4 mark those places
where we weaseled out of writing the section ourselves, and left the actual work to the
reader.’ Throughout the book we use several well-known acronyms, whose definitions
and explanations we collect in the glossary.

1. If you do a good job, please send us your text for our next edition.
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