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Preface

Evolution equations describe time dependent processes as they occur in
physics, biology, economy or other sciences. Mathematically, they appear in
quite different forms, e.g., as parabolic or hyperbolic partial differential equa-
tions, as integrodifferential equations, as delay or difference differential equa-
tions or more general functional differential equations. While each class of
equations has its own well established theory with specific and sophisticated
methods, the need for a unifying view becomes more and more urgent.

To this purpose functional analytic methods have been applied in recent
years with increasing success. In particular the concepts of Abstract Cauchy
Problems and of Operator Semigroups on Banach spaces allow a systematic
treatment of general evolution equations preparing the ground for a better
theory even for special equations.

It is the aim of this volume to make this evident. Five contributions by
leading experts present recent research on functional analytic aspects of evo-
lution equations.

In the first contribution, Giuseppe Da Prato from the Scuola Normale
Superiore in Pisa (Italy) gives an introduction to stochastic processes on in-
finite dimensional spaces. His approach is based on the concept of Markov
semigroups and does not require familiarity with probability theory. The main
emphasis is on important qualitative properties of these semigroups and the
Ornstein-Uhlenbeck semigroup serves as his major example.

In the second contribution, which is by far the longest, Peer Kunstmann
and Lutz Weis (both from the University of Karlsruhe in Germany) discuss
the (maximal) regularity of the solutions of inhomogeneous parabolic Cauchy
problems.

Regularity properties are fundamental for a theory of nonlinear parabolic
equations. Since 1998 this theory has made enormous progress with spectac-
ular breakthroughs based on new Fourier multiplier theorems with operator-
valued functions and “square function estimates” for the holomorphic H>-
functional calculus (some of these results are due to the authors). This con-
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tribution is a unifying and accessible presentation of this theory and some of
its applications.

Control theoretic aspects of evolution equations in finite dimensions have
been studied for a long time. Thanks to functional analytic tools there is
now a well established infinite dimensional theory described in some recent
monographs. However, this theory does not cover so-called boundary and point
control problems. Irena Lasiecka from the University of Virginia (USA)
developed (mostly with Roberto Triggiani) a systematic approach to these
problems using a beautiful combination of abstract semigroups methods and
sharp PDE estimates. In her contribution she explains this approach and
discusses illustrating examples such as systems of coupled wave, plate and
heat equations.

While in the previous contributions the focus is on the dynamics of the
state variable, Alessandra Lunardi (University of Parma, Italy) studies
moving boundary problems. In order to explain these highly nonlinear prob-
lems, she concentrates on the heat equation on a moving domain, first in one
and then in higher dimensions. Her work is intended as an introduction to an
important new field, to very recent results, and to interesting open problems.

Roland Schnaubelt (University of Halle, Germany) shows in the last
contribution how nonautonomous linear evolution equations can be studied
by a reduction to an autonomous problem to which semigroup methods ap-
ply. In particular, the well developed spectral theory for semigroups allows a
systematic characterisation of, e.g., exponential dichotomy of the solutions.
He then applies these results to obtain qualitative properties of the solutions
to nonlinear equations.

These contributions were the basis of lectures given at the Autumn School
on “Evolution Equations and Semigroups” at Levico Terme (Trento, Italy)
from October 28 to November 2, 2001, within the program of the CIRM
(Centro Internazionale per la Ricerca Matematica). We thank Professor Mario
Miranda for the support provided to the School. Thanks are also due to the
speakers for their cooperation and the permission to collect the expanded notes
of their lectures. We hope that this volume will be valuable for beginners as
well as for experts in evolution equations.

Trento and Tiibingen, Mimmo lannelli
March, 2004 Rawner Nagel
Susanna Piazzera
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An Introduction to Markov Semigroups

Lectures held at the Autumn School in Levico Terme
(Trento, Italy), October 28-November 2, 2001

Giuseppe Da Prato

Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy.
g.daprato@sns.it

Preface

This paper contains the notes of a short course on Markov semigroups. The
main aim was to give an introduction to some important properties as: er-
godicity, irreducibility, strong Feller property, invariant measures, relevant to
some important Markov semigroups arising in infinite dimensional analysis
and in stochastic dynamical systems. We have considered in particular the
heat semigroup in infinite dimensions, the Ornstein-Uhlenbeck semigroup,
the transition semigroup of a one dimensional dynamical system perturbed
by noise.

The lectures were designed for an audience having a basic knowledge of
functional analysis and measure theory but not familiar with probability. An
effort has been done in order to make the lectures as self-contained as possible.
In this spirit, the first part was devoted to collect some basic properties of
Gaussian measures in Hilbert spaces including the reproducing kernel and the
Cameron—Martin formula, a tool that was systematically employed.

Several concepts and results contained in this course are taken from the
the notes [3] and the monographs [4], [5], [6].

1 Gaussian Measures in Hilbert Spaces

In all this section H represents a separable Hilbert space, (inner product (-, -),
norm |-|), and L(H) the set of all linear continuous operators from H into H.
We denote by Y'(H) the subset of L(H) consisting of all symmetric operators
and we set

LT(H)={TeX(H): (Tx,x) >0, x,yec H}.

An important role will be played by symmetric nonnegative trace class
operators,
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LfL(H) ={T ¢ LT(H): Tt T < +0o0},

where

TrT =Y (Tey,ex)

k=1

and (e ) is a complete orthonormal system in H.

We recall that Tr T" does not depend on the choice of the orthonormal
system (ex). Moreover if T is of trace class then it is compact and Tr 7T is the
sum of its eigenvalues repeated according to their multiplicity, see e. g. [18].

Finally we shall denote by B(H) the o-algebra generated by all open (or
closed) subsets of H.

1.1 Measures in Hilbert Spaces

Let p1 be a probability measure on (H,B(H)). Assume that its first moment
is finite,

/ |z|p(dr) < 0.
H

Then the linear functional F' : H — R defined as

F(h) = /H (x,h)u(dx), h € H,

is continuous since |F(h)| < / |z|p(dz) |h|, h € H. By the Riesz represen-

H
tation theorem there exists m, € H such that
(my,, h) :/ (z,hyp(dr), he H.
H

m,, is called the mean of p. We shall write m,, = [,, xu(dz).
Assume now that the second moment of p is finite,

/ |72 pu(da) < +oc.
JH
Then we can consider the bilinear form GG : H x H — R defined as
G(h,k) = / (hyx —my)(k,x —my)p(dr), hke H.
JH
(7 is continuous since
|G(h. k)| < / lx —m,|*pu(dz) |h| |k|, h.ke H.
H

Therefore there is a unique (), € L(H ) such that
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(Quh, k / (h,x —m)( —my)pu(de), h ke H.
Q. is called the covariance of pu.

Proposition 1.1. @, € L] (H) that is, ts symmetric positive and of trace
class.

Proof. Symmetry and positivity of @, are clear. To prove that @, is of trace
class fix a complete orthonormal system (e ) in H and note that, since

(Quer;er) = |(x — m,, ex)|*u(dr), k €N,
H

we have, by the monotone convergence theorem and the Parseval identity,
that

Tr Q= Z/ [{(x — my, ex) 2 p(de) :/ |z — m,,|>u(dr) < +oo.

k=1

O
If t is a probability measure on (H, B(H)) we define its Fourier transform
by setting

(h) = / et u(de), h e H.
H
The following result holds, see e.g. [17].

Proposition 1.2. Let y and v be probability measures on (H, B(H)) such that
f(h) = 0(h) for all h € H. Then p = v.

Let K be another Hilbert space and let X : H — K be a Borel mapping
(). If pu is a probability measure on (H,B(H)) we denote by £(X) or pix the
law of X. £(X) is the probability measure on (K,B(K)) defined as

LOX)(I) = px (1) = w(X (1)), T € B(K).

The following formula of change of variables is basic.

Proposition 1.3. Let X : H — K be a Borel mapping and ¢ : K — R a
bounded Borel mapping. Then we have

/wmwwm:/qum» (1.1)
H

JK

!that is F € B(K) = X (F) € B(H).
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Proof. It is enough to prove (1.1) when ¢ is a simple function, see e.g. [15].
Let p = v where A € B(K) (?). Then we have ¢(X) = x , and so

/H (X (@) uldr) = p(X~1(A)) = px (A).
On the other hand we have
[ etmextan) = [ xawnxtdn) = pxa),

So, the conclusion follows. O

1.2 Gaussian Measures

Let us first consider Gaussian measures on R. For any m € R and A > 0, we
define the Gaussian measure N,, » on (R, B(R)) as
P e~ SFLae it >0,
an‘)\(dE) = (12)
0 (d€) it A =0,

where 6, is the Dirac measure concentrated at m:

1 ifmel
om(I) = I€B(H).
0 ifmél,

The following identities are easy to check.

+o0
/ £N,”,_)\(df) =m, (]3)
+2<
/ (E - ’“)szm./\(dE) = A, (14)
Ll ; N2
/ e'.mme'/\(dg) — elam—za” (15)

We now consider a general separable Hilbert space H. For any a € H and
any () € L(H) we want to define a Gaussian measure N, o on (H,B(H)).
having mean a, covariance operator (), and Fourier transform given by

ﬁ(h) =expqila,h 1 Qh.h)y, he H. (1.6)
W 2

2 For any Borel set A we denote by x4 the function that holds 1 on A and 0 on
the complement of A.
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Notice that, in view of Proposition 1.1, the fact that @ is symmetric, positive
and of trace class is a necessary requirement.

Let us consider the natural isomorphism v between H and the Hilbert
space €2 of all sequences (xy) of real numbers such that

.
Z lzi|? < +o0,
k=1

defined by v(x) = (), = € €. In all this section we shall identify H with 2,
Since Q is of trace class it is compact, so there exist a complete orthonormal
basis (ex) on H and a sequence of nonnegative numbers (A ) such that

Q(’;,- = A€, keN.

For any r € H we set o, = (r,ep). k € N.
We are going to define N, ¢ as a product measure

o0
1 a.Q — >< ,N,,k_)\k.
k=1
For this we first recall, following [10, Section 38], some general results about
countable products of measures. Let yx be a sequence of probability measures
on (R, B(R)). We shall define a product measure

0= X Mk s

k=1

on the space R™ = X :c:l R, consisting of all sequences of real numbers
(endowed with the product topology).

We first define p on all cylindrical subsets Iy, k,.a of R>, where n, k) <
... < k,, are positive integers, and A € B(R") :

]k,‘...k,,:A = {(T,) e R™ . (;I‘k1 5w Tk,,) < A} :

It is easy to see that the family of all cylindrical subsets of R> is an algebra,
denoted by C and that p is additive on C. Moreover the o-algebra generated
by C coincides with B(R>). See e.g. [7, page 9].

We define

Wy keea) = (pey X oo X g, WA), gy kia €C

and show that p is o-additive on C. This will imply, see e.g. [10]. that
i can be extended to a probability measure on the product o algebra

X o B(R) = B(R™).

Proposition 1.4. p is o -additive on C and has a unique extension to a prob-
ability measure on (R, B(R>)).
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Proof. To prove o-additivity of u it is enough to show continuity of p at 0.
This is equivalent to prove that if () is a decreasing sequence on C such
that u(F;) > ¢, j € N, for some € > 0, then we have

o
() B #0.
j=1
To prove this fact, let us consider the sections of E; defined as

Ej(a) ={z € RY®: (a,z) € E;}, a €R,
s
where we have used the notation R}® = X k=n+1 R, n € N. Set

F_,m = {a eR: pV(Ej(e)) > ;} JEN,

oC
where (") = X, _ .| px. n € N. Then by the Fubini theorem we have

W(E,) = /E;ﬂ“’(E;(a))m(dn)

= [ E e + [ () (o)

(e
JIE]

Therefore /L](F;l)) > £,
Since g is a probability measure, it is continuous at 0. Therefore, since
(F}-m) is decreasing, there exists a7 € R such that

uM(E;(@r)) > =, j €N,

B | M

and consequently we have

E;(ar) # 0. (L.7)
Now set

Ej(ar,a2) = {2 € RY : (a1,02,7) € Ej}, jEN, az € R,

and

P}m = {(12 eR: p?(Ej(a)) > } jeN

[N RO

Then by the Fubini theorem we have
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pHE @) = [ (@, a2) s(da)
JR

O o) + [ e

(2) (2) 7,
E, [F57]

2 £
< pa(Fy7) + 7
Therefore /Lg(Fj(Z)) > §. Since (F;z)) is decreasing, there exists @z € R such
that ' .

W(Ej(ar, ) > -, jEN,

| m

and consequently we have
Ej(ar, @) # 0. ) (1.8)
Arguing in a similar way we see that there exists a sequence (ax) € R> such
that
E;(aT, @) £ 0, (1.9)

where
Ei(ai,y...a,)={z € R} : (a1,....,a,,x) € E;}, n€eN.

This implies, as easily seen, that

Therefore ﬂ?il E; is not empty as required. Thus we have proved that j is
o-additive on C. Now the second statement follows since a o-additive function
on an algebra A can be uniquely extended to a probability measure on the
o-algebra generated by A, see [10]. O

We can now define the Gaussian measure N, .

Theorem 1.5. For any a € H and any Q € L} (H) there exists a unique
measure ji such that its Fourier transform p is given by

fi(h) = eil@Me=3 (QMh) b c p. (1.10)
Moreover,
/ |22 N, o(dz) = Tr Q + |a|?, (1.11)
JH
/ (z,hyp(dx) = a, h € H, (1.12)
H

/H (r —a,h){x —a,k)pu(dr) = (Qh, k), h,k € H. (1.13)
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We call p the Gaussian measure in H with mean 0 and covariance operator
Q and we set u = N, ¢.
Proof. Let us consider the product measure on (R>, B(R>)),

o0
o= X Ny A
k=1

defined by Proposition 1.4. We claim that the support of p is included in ¢?
that is that (%) = 1 (*). We have in fact, from the monotone convergence
theorem

/. S a2 = 3 / e =S e +ad),  (114)
B> 1o k=1 k=1
where pi;, = Ng, .. Therefore

p({r e R™: |z[f < 00}) =

as claimed.
Now we define the Gaussian measure N, ¢ as the restriction of i to 2. To
check (1.10) it is useful to introduce a sequence (F,) of projections in H :
n
P.x= E (v,ep)er, re H neN.
k=1
Obviously lim,, .~ P,x = r, 2 € H. Consequently, by the dominated con-
vergence theorem we have, recalling (1.5),

€i<""">;l,(d;17) = lim Pi<l)"’]"})"r)/1,((11 = lim H et N, o (dx)
Ju n—oc [ n—nc o

>

H (,i,u,,,h,, ,'_7 )\,,h,, —e ila. h) =1 (Qh h)

k=1

and so (1.10) is proved. (1.11) follows from (1.14).
Let us prove (1.12). Since |[(x,h)| < |z| |h| and [}, |x|p(dr) is finite by
(1.11), we have, by the dominated convergence theorem,

/. (r,h)p(dr) = lim /<P,,.I'./)>/t((]‘l').
JH H

n—oC

But

3 1t is easy to see that £2 is a Borel subset of R™.
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/ (Px, h)p(dr) Z/ rihyp(dr)

k=1

= Zh;,./ 2k Na, 2, (dxy) thk ={(P,a,h) — (a,h),

k=1 k k=1

as n — oo. Thus (1.12) is proved. The proof of (1.13) is similar. O

The last part of this section is devoted to the computation of some Gaus-
sian integrals, which will be often used in what follows. For the sake of sim-
plicity we assume that Ker ¢ = {0} and that (this is not a restriction),
A > A > >

To formulate the next result notice that for any e < /\—11, the linear operator
1 — eQ is invertible and (1 — Q)" ! is bounded. We have in fact, as easily
checked,

—~ |
1-eQ) 'z = ———— (r,ex)ex, r € H.
(1-2Q)"\a AZ_:AM@ ek)en, T €

=1
In this case we can define the determinant of (1 — Q) by setting

mn

det(1 —eQ) = lim JJ(1—erp) H(1 — g8a):

k=1 k=1

It is easy to see that, in view of the assumption >~ | Ap < 420, the product
below is finite and positive.

Proposition 1.6. Let 1t = N, ¢ and € € R. Then we have

S

Proof. For any n € N we have

[det(1 — eQ)] /2~ 2{1-e@) Taa) e o L
“pu(dr) = (1.15)

400, otherwise.

M

/ (Elpnir’z/l({l'r) - H /();-'Vf’Nu,k./\k(d-rk)'
JH k=1 YR

Since |P,xr|? 1 |x|* as n — oo and, by an elementary computation,

£..2 1 = e
/(’T'*’N,u4/\*_((1.1';\-) = ——=u 2 =%,

the conclusion follows from the monotone converge theorem. O

Exercise 1.7. Compute the integral

I = / |.I'|2'”/1((1.l'). m € N.
JH
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Hint. Notice that .J,, = 2" F{")(0), where

= fémz o(drx).
) /H ju(de)

Proposition 1.8. Let yp = N, . Then we have

m

E(

/ (’<h“r>,lt(dgl') _ /(u.h.)e%(Qh.h), he H. (116)
H

Proof. For any € > 0 we have
e(h..r) < e|.rl |B| < esl.rlz C%|.l'|2'

Choose € < /\Ll; then we see by Proposition 1.6 that the function x — e!-7)
is integrable with respect to p. Consequently, by the dominate convergence
theorem, it follows that

/ e () = Timm / ehoPur) y(d),
H

n—moC H

which yields the conclusion. O

2 Gaussian Random Variables

Let H and K be separable Hilbert spaces and let u be a probability measure
on (H,B(H)). A random variable X in H with values in K is a Borel mapping
X : H— K, that is

1eB(K)= X '(I)eB(H).

When K = R we call X a real random variable.
X is called Gaussian if its law £(X) = pux is a Gaussian measure on K.
We say also that X is a Gaussian random variable in H taking values in K.

Proposition 2.1. Let X : H — K be a random variable on (H,B(H), j1) such
that fH X(z)pu(dxr) = 0. Then the covariance QQx of the law of X is given by

(Qxa,a)k = / (X (x), )% pu(dr), ackK. (2.1)

H

Proof. We have in fact by the change of variables formula (1.1),

(@xa )i = /

(wiens (dy) = [ (X(a).lien(da).
JK

H



