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Preface

Topology evolved as an independent discipline in response to certain
rather specific problems in classical analysis. Of course, it is character-
istic of any fruitful branch of mathematics that the subject develop and
take on a significance independent of those problems from which it arose.
In the case of topology, however, this development has been so extensive
and so rapid that, unfortunately, its origins and relations to other areas of
mathematics are often lost sight of entirely. and, even less desirable, the
essential unity of the subject itself is sacrificed to the demands of speciali-
zation.

It is the intention of this introduction to the methods of topology in
Euclidean spaces to persuade students of mathematics, at the earliest pos-
sible point in their studies, that the evolution of topology from analysis
and geometry was natural and, indeed, inevitable; that the most fruitful
concepts and most interesting problems in the subject are still drawn from
independent branches of mathematics: and that, underlying its sometimes
overwhelming diversity of ideas and techniques, there is a fundamental
unity of purpose. To this end an ambitious agenda of topics from point-set,
algebraic, and differential topology has been included, although much of
the material familiar from standard introductions to topology is omitted al-
together. Indeed, metric space and topological space are never defined.
Rather, we restrict attention exclusively to subspaces of Euclidean spaces
where geometrical intuition remains strong so that we can avoid the tire-
some technicalities inherent in axiomatic treatments. In this way it is pos-
sible to go rather far in the development of those techniques that are cen-
tral to topology itself as well as its applications in other areas of mathe-
matics and the sciences.

A very considerable emphasis has been placed on motivation, which we
draw primarily from the student's background in differential equations,
linear algebra, modern algebra, and advanced calculus. We assume this
background to be rather strong and, in addition, that our readers are pos-
sessed of a healthy supply of that elusive quality known as "*mathematical
maturity.”” A great many arguments are left to the reader in the form of
exercises embedded in the body of the text and no asterisk appears to
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designate those that are used in the sequel — they are all used and must be
worked conscientiously. Of the 214 exercises in the text, 162 are of this
variety, while 52 are included in Supplementary Exercises at the ends of
chapters: the latter, although no less important, are not specifically called
upon in the development. A Guide to Further Study has been included at
the end of the book to suggest several directions in which to proceed to
obtain a deeper understanding of various aspects of the subject.

Gregory L. Naber
October 1979
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Chapter 1
Point-set topology of Euclidean spaces

1-1 Introduction

Geometry, in the broadest possible sense, emerged before the written and
perhaps even the spoken word as a gradual accumulation of subconscious
notions about physical space based on the ability of our species to recog-
nize ‘‘forms’’ and compare shapes and sizes. Until approximately 600 B.C.
the study of geometrical figures proceeded in the manner of an experi-
mental science in which induction and empirical procedure were the tools
of discovery. General properties and relationships were extracted from
observations necessitated by the demands of daily life, the result being a
rather formidable collection of *‘laboratory’’ results on areas, volumes,
and relations between various figures. It was left to the Greeks to trans-
form this vast array of empirical data into the very beautiful intellectual
discipline we now know as Euclidean geometry. The transformation re-
quired approximately three centuries to complete and culminated, around
300 B.c., with the appearance of Euclid’s Elements. It is difficult indeed
to exaggerate the importance of this event for the development of mathe-
matics. So decisive was the influence of Euclid that it was not until the
seventeenth century that mathematicians found themselves capable of
adopting essentially new attitudes toward their subject. Slowly, at times it
seems unwillingly, mathematics began to free itself from the constraints
imposed by the strict axiomatic method of the Elements. New and re-
markably powerful concepts and techniques evolved that eventually led
to an expanded and more lucid view of mathematics in general and geom-
etry in particular. The object in this introductory section is to indicate
how the subject of interest to us here (topology) arose as a branch of
geometry in this expanded sense.

Perhaps the most fundamental concept of the earlier books of Euclid’s
Elements is that of congruence. Intuitively, two plane geometric figures
(arbitrary subsets of the plane from our point of view) are congruent if
they differ only in the position they occupy in the plane, that is, if they
can be made to coincide by the application of some rigid motion in the
plane. Somewhat more precisely, two figures F, and F, are said to be

i



2 Point-set topology of Euclidean spaces

congruent if there is a mapping f of the plane onto itself that leaves in-
variant the distance between each pair of points (i.e., d(f(p), flg) =

d(p, g) for all p and ) and carries F, onto F, (i.e., f(F,) = F;). A map
that preserves the distance between any pair of points is called an isom-
etry and is the mathematical analog of a rigid motion; the study of con-
gruent figures in the plane is, for this reason, often referred to as plane
Euclidean metric geometry. If we construct an orthogonal Cartesian co-
ordinate system in the plane, we can show that the isometries of the plane
are precisely the maps (x, y) — (x', y'), where

) x'=Ax + By + C
y' = =(—Bx + Ay) + D,
A, B, C, and D being real constants with A2 + B? = 1 (see Gans, p. 65).
Observe that the composition of any two isometries is again an isometry
and that each isometry has an inverse that is again an isometry. Now, any
collection of invertible mappings of a set § onto itself that is closed under
the formation of compositions and inverses is called a group of transfor-
mations on S; the collection of all maps of the form (1) is therefore re-
ferred to as the group of planar isometries. From the point of view of
plane Euclidean metric geometry the only properties of a geometric fig-
ure F that are of interest are those that are possessed by all figures con-
gruent to F, that is, those properties that are invariant under the group of
planar isometries. Since any map of the form (1) carries straight lines onto
straight lines, the property of being a straight line is one such property.
Similarly, the property of being a square or, more generally, a polygon of
a particular type is invariant under the group of planar isometries, as is
the property of being a conic of a particular type. The length of a line seg-
ment, area of a polygon, and eccentricity of a conic are likewise all in-
variants and are thus legitimate objects of study in plane Euclidean metric
geometry.

Of course, the point of view of plane Euclidean metric geometry is not
the only point of view. Indeed, in Book VI of the Elements itself, empha-
sis shifts from congruent to similar figures. Roughly speaking, two geo-
metric figures are similar if they have the same shape, but not necessarily
the same size. In order to formulate a more precise definition, let us refer
to a map f of the plane onto itself under which each distance is multiplied
by the same positive constant & (i.e., d(f(p), f(q)) = kd(p, q) for all p
and q) as a similarity transformation with similarity ratio k. It can be
shown that, relative to an orthogonal Cartesian coordinate system, each
such map has the form

’

x'"=ax + by + m

) y' = *(=bx + ay) + n,
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where (a® + b?)12 = k (see Gans, p. 77). Two plane geometric figures F;
and F, are then said to be similar if there exists a similarity transforma-
tion of the plane onto itself that carries F, onto F,. Again, the set of all
similarity transformations is easily seen to be a transformation group, and
we might reasonably define plane Euclidean similarity geometry as the
study of those properties of geometric figures that are invariant under this
group, that is, those properties that, if possessed by some figure, are
necessarily possessed by all similar figures. Since any isometry is also a
similarity transformation (with kK = 1), any such property is necessarily an
invariant of the group of planar isometries; but the converse is false since,
for example, the length of a line segment and area of a polygon are not
preserved by all similarity transformations.

At this point it is important to observe that, in each of the two geome-
tries discussed thus far, certain properties of geometric figures were of
interest while others were not. In plane Euclidean metric geometry we
are interested in the shape and size of a given figure, but not in its posi-
tion or orientation in the plane, while similarity geometry concerns itself
only with the shape of the figure. Those properties that we deem impor-
‘tant depend entirely on the particular sort of investigation we choose to
carry out. Similarity transformations are, of course, capable of ‘‘distort-
ing”’ geometric figures more than isometries, but this additional distortion
causes no concern as long as we are intergsted only in properties that
are not effected by such distortions. In other sorts of studies the permis-
sible degree of distortion may be even greater. For example, in the mathe-
matical analysis of perspective it was.found that the ‘‘interesting’’ prop-
erties of a geometric figure are those that are invariant under a class
of maps called plane projective transformations, each of which can be
represented, relative to an orthogonal Cartesian coordinate system,
in the following form (see Gans, p. 174):

X' = ax + ay + ag
X + Yy + c3 a, as das
3) where b, b, bs| # 0.

, _bix + by + by ¢, € Cs

i x + Cy + 3

The collection of all such maps can be shown to form a transformation
group, and we define plane projective geometry as the study of those
properties of geometric figures that are invariant under this group. Two
figures are said to be ‘‘projectively equivalent’’ if there is a projective
transformation that carries one onto the other. Since any similarity trans-
formation is also a projective transformation, any invariant of the projec-
tive group is also an invariant of the similarity group. The converse, how-
ever, is false since projective maps are capable of greater distortions of
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geometric figures than are similarities. For example, two conics are al-
ways projectively equivalent, but they are similar only if they have the
same eccentricity.

Needless to say, the approach we have taken here to these various geo-
metrical studies is of relatively recent vintage. Indeed, it was Felix Klein,
in his famous Erlanger Program of 1872, who first proposed that a ‘‘geom-
etry’’ be defined quite generally as the study of those properties of a set §
that are invariant under some specified group of transformations of S.
Plane Euclidean metric, similarity, and projective geometries and their
obvious generalizations to three and higher dimensional spaces all fit quite
nicely into Klein’s scheme, as did the various other offshoots of classical
Euclidean geometry known at the time. Despite the fact that, during this
century, our conception of geometry has expanded still further and now
includes studies that cannot properly be considered ‘‘geometries’’ in the
Kleinian sense, the influence of the ideas expounded in the Erlanger Pro-
gram has been great indeed. Even in theoretical physics Klein's emphasis
on the study of invariants of transformation groups has had a profound
impact. The special theory of relativity, for example, is perhaps best
regarded as the invariant theory of the so-called Lorentz group of trans-
formations on Minkowski space.

Based on his appreciation of the importance of Riemann’s work in com-
plex function theory, Klein was also able to anticipate the rise of a new
branch of geometry that would concern itself with those properties of a
geometric figure that remain invariant when the figure is bent, stretched,
shrunk or deformed in any way that does not create new points or fuse
existing points. Such a deformation is accomplished by any bijective map
that, roughly speaking, ‘‘sends nearby points to nearby points,’’ that is, a
continuous one. In dimension two, then, the relevant group of transforma-
tions is the collection of all one-tc-one maps of the plane onto itself that
are continuous and have continuous inverse; such maps are called homeo-
morphisms or topological maps of the plane. Consider, for example, the
map f of the plane onto itself, which is given by f(x, y) = (x, ¥®). Now, f
is continuous and has inverse f~!(x, y) = (x, y'®) that is also continuous,
so fis indeed a homeomorphism of the plane. What sort of properties of a
plane geometric figure are preserved by f? Certainly, the property of
being a straight line is not since, for example, the line given by the equa-
tion y = x is mapped by f onto the curve y = x*® (see Figure 1-1 (a)). Sim-
ilarly, the property of being a conic is not invariant since the circle x* +
y2 = 1 is carried by f onto the locus of x? + y?3 = 1, which is shown
in Figure 1-1 (b).

Topological transformations are clearly capable of a very great deal of
.distortion. Indeed, virtually all of the properties the reader is accustomed
to associating with plane geometric figures are destroyed by even the rela-
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y Y
y=x x2+y2=1
y=x
x x
. k X2 +y2/3 =1
(a) (d)
Figure 1-1

tively simple map f. Nevertheless, f does preserve a number of very im-
portant, albeit less obvious properties. For example, although a straight
line need not be mapped by f onto another straight line, its image must
also be “*one-dimensional’’ and consist of one *‘connected’’ piece. The
image of the circle x* + y? = 1, although not a conic, shares with the cir-
cle the property of being a ‘‘simple closed curve.”” Properties of plane
geometric figures such as these that are invariant under the group of topo-
logical transformations of the plane are called extrinsic topological prop-
erties.

During the past one hundred years topology has outgrown its geometri-
cal origins and today stands alongside analysis and algebra as one of the
most fundamental branches of mathematics. Roughly speaking, topology
might now be defined simply as the study of continuity. The approach we
take here to this subject, while less general than it might be, is somewhat
more general than that just outlined. We observe that the ambient space
in which our geometrical figures are thought of as existing is, to a large
extent, arbitrary (e.g., any plane figure can also be regarded as a subset
of 3-space) and that, by insisting that the topological transformations be
defined on this entire space, we have imposed rather unnatural restric-
tions on our study. We therefore choose to take a broader view of topo-
logical maps, allowing them to be defined on the given geometric figure it-
self without reference to the space in which it happens to be embedded,
thus turning our attention from ‘‘extrinsic’’ to ‘‘intrinsic’’ topological
properties, that is, properties of the figure itself that do not depend on the
particular space in which it happens to reside.
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1-2  Preliminaries

We shall denote by R the set of all real numbers and assume that the
reader is familiar with the basic properties of this set (specifically, that
under the usual operations R is a complete ordered field; see Apostol,
Sections 1-1 through 1-9, or Buck, Appendix I). Recall that if A,, . . . ,

A, are arbitrary sets, then the Cartesian product A; X - - - X A, is de-
fined by A, X - - - x A, ={ay, . . . .a,):aq, €A fori=1,...,n}L
Euclidean n-space R" is thus the product R* = R X - - - X R (n factors).
As usual we identify R® X R™ and R™™ by not distinguishing between
the ordered pair ((a;, . . . , ay), (by, . . ., by)) and the (n + m)-tuple
(ayy « o« yay,byy . . . ,by). Thus, if A C R*and B C R™, we may regard
A % B as a subset of R"*™,

Ifx = (v, o . ., x,)and y = (y,, . . . , y,) are points of R® and a is a
real number, we define x + vy = (x;, . . . ,x,) + (g, - -« 5 ¥ = (x; +
Vie o o o o v, + vy, and ax = a(x,, . . . , x,) = (ax,, . . . , ax,) and

thus endow R”" with the structure of a real vector space of algebraic di-
mension n. (We assume the reader to be acquainted with basic linear
algebra.) We denote by 0 the additive identity (0,0, . . . , 0, 0) in R* and
lete,=(1,0, . ..,0,0),e,=(0,1, ...,0,0),....e,=1(0,0,
.. . ,0, 1) be the standard basis vectors for R". A map § : R* — R™ is
said to be affine if there is a y, € R™ and a linear map T : R® — R™ such
that S(x) = y, + T(x) for each x in R". Since the range of a linear map is
a linear subspace, the range of an affine map must be of the form y, +

V = {yy + v: v € V} for some linear subspace V of R™; such a ‘‘transla-
tion™" of a linear subspace of R™ is called an affine subspace or hyper-
plane in R™ (see Section 2-2 for more details).

Ifx=1(xq,...,x)andy = (y,, . . . ,y,) are arbitrary points of R,
then their inner product (or dot product) is defined, as usual, by x - y =
x;v; + ¢ - - + x,¥,. The norm of x, denoted |||, is then given by ||x|| =

(x - x)'2. Finally, the distance d(x, y) between x and y is defined by
d(x, v) = ||y — x|. Standard properties of the inner product and norm
(Apostol, Section 3-6, and Buck, Section 1.3) translate immediately to the
following result on the ‘*metric function™ d.

Theorem 1-1. Let x, y, and z be arbitrary points in R®. Then
(a) d(x, y) =0and d(x, y) = 0iff x = y.

(b) d(x, y) = d(y. x).

(c) dx, y) < d(x, z) + d(z, y).

Now let x, be a point in R® and r > 0 a real number. The open ball
of radius r about x, is defined by U,(x,) = {x € R™ d(x,, x) < r}; the
closed ball of radius r about x, is B,(x,) = {x € R™ d(x,, x) < r}. The ball
B,(0) = {x € R™ || < 1} is called the closed n-ball and denoted B", while
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the subset $»! = {x € R™ |x| = 1} is called the (n — [)sphere. If A

is an arbitrary subset of R*, the diameter of A is defined by diam A =
sup{d(x, ¥) : x, y € A} if A # J and diam & = 0; A is said to be bounded
if diam A is finite (this is the case iff A C B,(0) for some r > 0). If B is
another subset of R”, then the distance between A and B is defined by
dist(A, B) = 0if A = @ or B = & and dist(A, B) = inf{d(x, y) : x € A,
yE B}ifA # @and B # .

If x and y are any two points in R”, then the open line segment joining x
and y is denoted (x, y) and defined by (x, y) = {tx + (1 =y : 0 <1t < 1};
the closed line segment joining x and y is [x, y] = {tx + (1 — Ny :0 <
t < 1}. A subset A of R* is convex if [x, v] C A whenever x and y are
in A.

Exercise 1-1. Let x, be a point in R" and r > 0 a real number. Show that
U(x,) and B,(x,) are both convex.

Observe that any intersection of convex sets is also convex and that
any subset A of R" is contained in a convex set (e.g., R™ itself). We may
therefore define the convex hull H(A) of A as the intersection of all con-
vex subsets of R® containing A and be assured that H(A) is convex for
every A.

The final preliminary matter we must consider is the distinction, no
doubt already familiar to the reader (see Apostol, Section 2-11, or Buck,
p. 30), between countable and uncountable sets. Let us say that two non-
empty sets S, and S, are numerically equivalent, or of the same cardi-
nality, if there is a one-to-one mapping of S, onto S,. A set is finite if it is
either empty or numerically equivalent to {I, . . . , n} for some positive
integer n. A set is countably infinite if it is numerically equivalent to the
set N={1,2, ... ,n ... }ofall positive integers. If a set is either
finite or countably infinite we say that it is countable. Intuitively, a set is
countable if it is either empty or if its elements can be listed in a (perhaps
terminating) sequence. Finally, a set that is not countable is uncountable.

Lemma 1-2. Every subset A of a countable set S is countable.

Proof- Since every subset of a finite set is finite (and therefore countable),
we may assume without loss of generality that S is countably infinite. Let

f: N— S be a bijection, where N = {1,2, . . . ,n, ...}, and define
g : N — N inductively as follows: Let g(1) be the least positive integer for
which f(g(1)) is in A and assume that g(1), . . . , g(n — 1) have been de-

fined. Let g(n) be the least positive integer greater than g(n — 1) such
that f(g(n)) is in A. The composition fo g : N — A is a bijection, so A is
countable. Q.E.D.
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Lemma 1-3. The union of countably many countable sets is countable.

Proof: By Lemma 1-2 it will suffice to show that the union of a countably
infinite collection {A;, Ay, . . . , A,, . .. }of countably infinite sets is
countable. Define B, = A, and, forn > 1, let B, = A, — UjZlA,. Then
each B, is countable by Lemma 1-2, BN B; =& 1f17éj and Uy, B, =

U®_,A,. Again by Lemma 1-2, we need only consider the case in which
each B, is countably infinite. Thus, we may enumerate the elements of
each B, as indicated:

B,: bys — by by —
l / e
Byt by, Dy boy - - -
" /
Bg: bSI h;o o

By by - - -

Now define f: N — Uy, B, by f(1) = by, f(2) = byy, f(3) = bys, f(4) =
by, f(5) = by, . . . , and so on, following the scheme indicated by the
arrows. Then fis surjective. Moreover, since the B, are disjoint, fis one-
to-one and the result follows. Q.E.D.

Lemma 1-4. Let §,, . . . , S, be countable sets. Then §; X - - - X S, is
countable.

Exercise 1-2. Prove Lemma 1-4. Hint: Use Lemma 1-3 and induction.
Example 1-1. Countable and Uncountable Subsets of R. (a) The set Z of

integers is countable. This follows immediately from the enumeration indi-
cated:

12 3 4 5 6 7---
R
o 1 -1 2 -2 3 -3.-..

(b) The set Q of rational numbers is countable. To see this, write each
element of Q as m/n, where m and n are integers with no common factors
and n is positive. The map that carries m/n to the ordered pair (m, n)
thus maps Q bijectively onto a subset of Z X N. But Z x N is countable
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by (a) and Lemma 1-4, so each of its subsets is countable by Lemma
1-2. It follows that Q is countable.

(c) The closed unit interval I = [0, 1] is uncountable. To see this, let
f: N— [0, 1] be any one-to-one map. We show that f'is not surjective.

For each n in N let 0.a,,ap2a,; - . . be a decimal expansion for f(n). De-
fine a number 0.5,b,b; . . . in [0, 1] as follows: b, = 5 if a;, # 5 and
b, = 7 if a = 5. Then 0.h,bybs . . . is not in the image of f since it has

a unique decimal expansion that differs from f(#) in the nth place for each
nin N.

(d) If @ and b are real numbers with a < b, then the interval [a, b] is
uncountable. Since the map f: [a, b] — [0, 1] defined by f(x) = (x — a)/
(b — a) is bijective, this follows immediately from (c).

(e) From (d) and Lemma 1-2 it follows that any subset of R that con-
tains an interval [a, b], where a < b, is uncountable. In particular, R
itself is uncountable. However, an uncountable subset of R need not
contain an interval, for example, the set P of irrational numbers is un-
countable since Q is countable and R = Q U P. Another example is con-
structed in (f).

(f) Recall that for each x in [0, 1] there exists a sequence s;, s, $3,

. with 5, €{0, 1, 2} for each i such that x = 32 s;,/3%. (The proce-
dure for determining the s; will become clear shortly.) We shall write x =
5185283 . . . and call :s;5555 . . . the triadic expansion of x. Some num-
bers have two such expansions. For example, :2000 . . . and :1222 . . .
both represent the number 2/3 since 2/3 + 0/32 + 0/3% + - - - =2/3
and 1/3 +2/32+2/33+- - - =1/3+23%,(1/3)i= 1/3+2[22,(1/3)!
-1 —-(1/3)]=1/3+2[(3/2) — 1 — (1/3)] = 2/3. This situation will
occur only when one of the expansions repeats 0’s and the other re-
peats 2’s from some point on. We define the Cantor set C to be the set of
all those x’s in [0, 1] that have a triadic expansion in which the digit 1
does not occur. This set has a simple geometrical interpretation that we
obtain as follows: Let F, denote the closed interval [0, 1]. Delete the open
interval (4, %) from F, to obtain the set F, = [0, ] U [3, 1] (see Figure
1-2). Note that the ‘‘middle third”’ (4, %) of [0, 1] consists precisely of
those x’s in [0, 1] whose triadic expansions must have a 1 in the first digit.
Thus, F, consists of those x's in [0, 1] that have a triadic expansion with
s; # 1. Now delete from F, the middle thirds (4, §) and (%, §) of each of
the two closed intervals [0, ] and [, 1] to obtain the set F, = [0, §] U
3,31 U [3, §] U [8, 1] (see Figure 1-2).

Observe that (3, 3) and (4, §) consist precisely of those x’s in [0, 1]
whose triadic expansions must have a 1 in the second digit, but not in the
first. Thus, F; consists of those x’s in [0, 1] that have a triadic expansion
15,5283 . . . withs; # 1 and s, # 1. We now continue this process induc-
tively, at each stage deleting the open middle third of each closed interval
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F —
Yoo 1
Fr i e
0 1 H 1
By e—p-a—p——= T
3 7 3 3 9 9
Figure 1-2

remaining from the previous stage. We therefore obtain a descending se-
quence F; D F, D F; D . . . of subsets of [0, 1], each of which is a finite
union of disjoint closed intervals (e.g., F,5 consists of 16,777,216 such in-
tervals). The Cantor set C is then NE_; F,.

Remark: The sum of the lengths of all the open intervals removed from
[0, 1]toform Cis 1sinced + 3+ + - - - =3 22, 3" = HA) = 1.
It follows that C cannot contain an interval.

Finally, we show that C is uncountable by exhibiting a bijective map of
"0, 1) onto C. For each x in [0, 1) let x = :b,b,b; . . . be a binary expan-
sion for x. Thus, each b; is either 0 or 1 and x = 22, b;/2%. Let s5; = 2b;
for each i, and let f(x) be the point in [0, 1] whose triadic expansion is
:5,5383 . . . . Then fis one-to-one, f(x) is in C for each x in [0, 1), and,
moreover, every element of C is the image under f of some x in [0, 1) so f
is surjective. It follows from (e) that C is uncountable.

1-3  Open sets, closed sets, and continuity

You will recall (Apostol, Definition 3-24, or Buck, Section 1.5) that a
subset U of R" is said to be open in R" if, for each x, € U, there is an
r > 0 such that the open ball U.(x,) is contained entirely in U.

Theorem 1-5. (a) & and R” are open in R".

(b) Any union of open subsets of R" is open in R".
(©) Any finite intersection of open subsets of R” is open in R".
Exercise 1-3. Prove Theorem 1-5. Q.E.D.

A set Cin R™ is closed in R* if its complement R* — C is open in R”
(see Apostol, Theorem 3-31, or Buck, Section 1.5).



