LINEAR
PROGRAMMING
IN INFINITE-
DIMENSIONAL
SPACES

~ Edward J. Anderson

Peter Nash

e
S



LINEAR PROGRAMMING
IN INFINITE-
DIMENSIONAL SPACES

Theory and Applications

Edward J. Anderson
Peter Nash

Management Studies Group
Engineering Department, University of Cambridge

A Wiley-Interscience Publication

JOHN WILEY & SONS
Chichester - New York - Brisbane - Toronto - Singapore



Copyright © 1987 by John Wiley & Sons Ltd.
All rights reserved.

No part of this book may be reproduced by any means, or transmitted, or translated into a machine
language without the written permission of the publisher

Library of Congress Cataloging in Publication Data:

Anderson, E. J. (Edward J.), 1954—
Linear programming in infinite-dimensional spaces.

(Wiley—Interscience series in discrete mathematics
and optimization)

‘A Wiley-Interscience publication.’

Includes index.

1. Linear programming. 2. Vector spaces.
3. Duality theory (Mathematics) I. Nash, Peter.
IL. Title. III. Series.
T57.74.A467 1987 519.7"2 86-32579

ISBN 0 471 91250 6

British Library Cataloguing in Publication Data:

Anderson, Edward J.
Linear programming in infinite-dimensional
spaces. —(Wiley Interscience series in
discrete mathematics and optimization)
1. Linear programming
I. Title I1. Nash, Peter
519.72 T57.74

ISBN 0-471 91250 6

Printed and bound in Great Britain



LINEAR PROGRAMMING IN
INFINITE-DIMENSIONAL SPACES



WILEY-INTERSCIENCE
SERIES IN DISCRETE MATHEMATICS AND OPTIMIZATION

ADVISORY EDITORS

Ronald L. Graham
AT & T Bell Laboratories, Murray Hill, New Jersey, U.S.A.

Jan Karel Lenstra
Centre for Mathematics and Computer Science, Amsterdam, The Netherlands

Graham, Rothschild, and Spencer
RAMSEY THEORY

Tucker
APPLIED COMBINATORICS

Pless
INTRODUCTION TO THE THEORY OF ERROR-CORRECTING CODES

Nemirovsky and Yudin
PROBLEM COMPLEXITY AND METHOD EFFICIENCY IN OPTIMIZATION
(Translated by E. R. Dawson)

Goulden and Jackson
COMBINATORIAL ENUMERATION

Gondran and Minoux
GRAPHS AND ALGORITHMS
(Translated by S. Vajda)

Fishburn
INTERVAL ORDERS AND INTERVAL GRAPHS

Tomescu
PROBLEMS IN COMBINATORICS AND GRAPH THEORY
(Translated by R. A. Melter)

Palmer
GRAPHICAL EVOLUTION

Lawler, Lenstra, Rinnooy Kan, and Shmoys
THE TRAVELING SALESMAN PROBLEM

Hall
COMBINATORIAL THEORY

Minoux
MATHEMATICAL PROGRAMMING

Schrijver
THEORY OF LINEAR AND INTEGER PROGRAMMING

Anderson and Nash
LINEAR PROGRAMMING IN INFINITE-DIMENSIONAL SPACES



Preface

A linear program is an optimization problem with linear objective function and
linear constraints. Problems of this type are of central importance in the theory
and practice of optimization, for several reasons. Principally, the theory of linear
programming in finite-dimensional spaces is both elegant and complete, an
appealing embodiment of Lagrangian duality theory. The simplex algorithm and
all its variations are very efficient practical solution methods, and provide not
just an optimal solution but very useful information about the sensitivity of the
solution to variations in the problem data, crucial when these data are known
only imprecisely. In consequence, it is often found worthwhile to make linear
models of non-linear real-world problems, despite the loss of accuracy that this
involves.

In recent years, there has been a movement towards the integration of a
number of seemingly different areas of optimization theory through the study of
optimization problems posed in an abstract setting, capable of encompassing
both finite- and infinite-dimensional problems. A landmark in this area is the
book Optimization by Vector Space Methods, by D. G. Luenberger, published in
1969. This book is a convincing demonstration of the power of an abstract
approach, and the way in which it can deepen our understanding of optimization
theory.

It is probably inevitable, then, that even without the impetus of applications,
linear programming in an abstract setting would have been a subject of study. In
fact, infinite-dimensional linear programs arise in a number of applications, and
it was from these that the first attempts to extend the finite-dimensional theory
sprang. These early attempts were more or less equally concerned with duality
theory and with the development of extensions of the simplex algorithm.
Latterly, work has tended to concentrate rather more on the former than the
latter, although both remain active research areas.

At the time of writing of this book, a fairly extensive theory exists for so-called
semi-infinite programming, which is concerned with problems in which either the
number of variables or the number of constraints is infinite, but not both. This
theory encompasses both duality and solution algorithms. In the wider setting of
infinite-dimensional linear programming, no such complete theory exists, and
the work on duality theory and that on simplex extensions have not so far been
integrated to the same extent. The main objectives of this book are to survey the
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vi Preface

theory as it now stands, and to attempt as far as possible to present these two
areas of work in a way which brings out the connections between them and their
implications for each other. In doing this we treat a number of interesting
problems arising from very disparate areas of mathematics.

We are particularly concerned to try to elucidate the way in which the
properties of linear programs and the workings of simplex-like algorithms
depend on the underlying properties of the spaces in which the program is set.
Accordingly, the book begins with an examination of the sorts of infinite-
dimensional problem that arise in applications, and examines what happens
when we try to extend the concepts of finite linear programming to them in a
naive way. Numerous difficulties appear, and in Chapter 2 we attempt to resolve
these by formulating appropriate definitions of the concepts of basis and
degeneracy. In doing this, we postulate a bare minimum of structure in the spaces
in which our programs are posed: linear-space structure, a partial order, a linear
objective functional and a linear constraint map. These suffice for some sort of
strong duality result for general problems, though not necessarily of practical
value. More useful strong duality results are derived in Chapter 3, where we make
assumptions about the topological structures of the problem spaces, and use
functional analytic methods to establish the existence of optimal dual solutions.

Chapter 4 contains a brief treatment of semi-infinite programming. This by its
nature lies half way between finite LP and the fully infinite problems discussed in
the following chapters. In Chapters 5-7, three particular classes of infinite-
dimensional linear programs are examined in some detail. For each, the duality
theory is developed, illustrating the theory described in Chapters 2 and 3, and
used in the formulation of solution algorithms. These classes of programs are
infinite-dimensional analogues of the assignment problem, the maximal flow in a
network problem, and a problem related to the minimum-cost multi-commodity
network flow problem, which we have called the separated continuous linear
program. This progression is an attempt to go from problems with a lot of
structure, and work towards the more general. The final chapter of the book gives
a very brief discussion of four other types of infinite-dimensional linear program.

Our interest in infinite-dimensional linear programs has grown out of work on
algorithms for the solution of some special classes of infinite-dimensional linear
programs. This has meant that our concern is with linear programming rather
than just linear programs. However, we have chosen not to include descriptions
of detailed numerical methods.

This book could be used as the text for a course of lectures on infinite-
dimensional LP, or in conjunction with other books in a more general course on
optimization in general vector spaces. An early draft was in fact used for the first
purpose here in Cambridge. The prerequisites for the book are an exposure to
optimization theory in R" (and in particular, linear programming) and elemen-
tary convex analysis, linear algebra and functional analysis.

Much of this book, especially the sections dealing with algorithms, has come
out of work done in Cambridge over the last four years. In particular, Chapters 5
and 6 owe a great deal to Dr. A. B. Philpott, who proved many of the results given
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there and was responsible for a large part of the formulation of the algorithms.
One of us (P. N.) would like to acknowledge the support provided by the Allen
Clark Research Fellowship at Churchill College. Both of us are grateful for the
facilities and the stimulating environment provided by the Management Studies
Group of Cambridge University Engineering Department.

Eddie Anderson
Peter Nash
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1

Infinite-dimensional
Linear Programs

1.1 INTRODUCTION

A linear program is an optimization problem with a linear objective functional
and linear constraints. In 1947, G. B. Dantzig discovered the simplex method for
the solution of such problems, and since then the method has become perhaps the
most widely used of all optimization techniques. Two main factors seem to have
contributed to this popularity. On the one hand, the simplex method is observed
to be very efficient in practice. On the other hand, the method provides a very
complete solution to the problem. As well as the optimal values of the decision
variables, the output of the simplex algorithm includes much information about
the sensitivity of the optimal solution to changes in the problem data. This
information can be very useful when the parameters of the problem are known
only imprecisely. These factors have made it often worthwhile to accept the
inaccuracies involved in using a linear model of a non-linear real-world problem.

Until comparatively recently, a complete theory of linear programming existed
only for problems involving a finite number of decision variables subject to a finite
number of constraints. We shall refer to such a problem as a finite or finite-
dimensional LP. Formally, it is posed as

FLP: minimize cTx

subject to Ax = b,

xeR", x>0,

where ce R", be R™ and the m x n matrix A are given. The positivity constraint
x >0 is interpreted as meaning x; >0,i=1,2,...,n.

It is difficult to date the first attempts to extend the theory of linear
programming to more general settings, but an early example of a linear-
programming problem posed other than in R" was due to Bellman (1957), who
examined a particular linear optimal control problem arising from a model of a
production system. The control problem was posed as a linear program in a space
of functions of a continuous-time variable. Such problems have come to be called
continuous-time linear programs, and have been the object of considerable study,

1



2 1 Infinite-dimensional Linear Programs

along with many other linear programs posed in a variety of abstract vector
spaces. Our object here is to examine the theory of linear programming in this
more general sense, and particularly as it relates to the extension to infinite-
dimensional problems of the simplex and related algorithms.

Accordingly, this book is set out as follows. We begin by looking, in the
remainder of this chapter, at some problems which can be posed as infinite-
dimensional linear programs. We then examine briefly the elements of the simplex
algorithm for FLP, and formulate some questions which must be addressed in
any attempt to extend to the infinite-dimensional case the concepts which underlie
the simplex algorithm. Examples demonstrate some of the difficulties involved in
making these extensions. The resolution of some of these difficulties is the aim of
Chapters 2 and 3. The remaining chapters of the book are then devoted to
working out the theory and deriving algorithms for a number of particular classes
of infinite-dimensional problems.

1.2 SOME INFINITE LINEAR PROGRAMS

To motivate our study, we examine here some problems which are naturally
modelled as infinite linear programs.

1.2.1 The bottleneck problem (Bellman (1957))

In an economy, n different goods, G,, G,, . . ., G,, are produced by m different
types of plant or production facility, P,, P,, . . ., P,,. At the beginning of a five-
year plan, there is available a certain capacity in each of these types of plant, and
more can be made by re-investing the goods produced. The aim of the plan is to
maximize the productive capacity at the end of the period.

Let x;(t),i = 1, 2, . . . ,m,denote the rate of production of new capacity of type i
at time ¢. Production of new plant requires the consumption of a certain quantity
b;; of good G; for each additional unit of plant P;. Thus the amounts of goods
consumed in this way are given by Bx (t), where x(¢) is the vector with components
Xy (t), X5 (t), - . ., X, (t) and B is the matrix whose i, jth element is b;;. Let z;(t)
denote the total productive capacity of type i available at time t. Denote by d;; the
rate of production of G, for each unit of plant P;. Then the total rates of
production of goods at time t are given by Dz(t), where D is the matrix whose i, jth
element is d;; and z(t) is the vector (z, (t), z,(2), . . . , 2, (1))".

The constraint on investment in additional plant due to limitations in
productive capacity is then given by

Bx(t) < Dz (1)

throughout the time period under consideration. If ¢, is the vector of initial
productive capacities, we can write

z(t) = c0+fx(r) dr, (1)

0



1.2 Some Infinite Linear Programs 3

and hence
t
Bx(t)—j Dx(r)dr < c, 2)
0

where ¢ = Dc,. If we wish to maximize a weighted sum, X q;z,/(T), of the
production capacities at the end of the time period, then we obtain the following
linear program

T
BP: maximize J a’ x(t)de
V]

t
subject to Bx(t)—f Dx(r)dt < c,
0

x(t) =0, te[0, T].

The decision variables here are the functions x;. If we wish to maximize a
weighted sum of the total production of the various goods over the whole time
interval, then the form of the problem is very similar. An integration by parts is
necessary and the vector a in the objective function is replaced by a function of
time of the form (1 —t) DTa.

This type of problem is called a continuous or continuous-time linear program.
Various extensions to the basic form of the problem posed here have been studied,
particularly the case where a, ¢, B and D vary with time. The name bottleneck
problem refers to the constraint on production capacity.

1.2.2 Continuous-time network flow

A classical problem in finite linear programming is that of maximizing the flow of
some commodity between two specified nodes (the source and the sink) in a
transportation network whose arcs are subject to capacity limitations. When the
capacity limitations do not vary with time the problem is solved by choosing a
single set of constant flows, and this can be done by means of a simple algorithm
due to Ford and Fulkerson (1962). This algorithm relies on an elegant duality
theorem which is available for this particular problem. The duality theorem tells
us that the problem of maximizing the flow in the network is equivalent to that of
partitioning the network into two sets of nodes, one containing the source and the
other containing the sink, in such a way as to minimize the total capacity of those
arcs connecting nodes associated with the source to nodes associated with the
sink. Such a partition is called a cut, and the duality theorem is sometimes called
the maximum-flow minimum-cut theorem.

Infinite-dimensional versions of this problem arise in a number of contexts.
Perhaps the most obvious is the case where the capacities of the arcs vary with
time, and there is the possibility of storage at the nodes of the network. Consider,
for example, a system of n reservoirs R,, R,, . . ., R, from which a single, time-
varying demand has to be met during some time period [0, 7']. Suppose that the



4 1 Infinite-dimensional Linear Programs

capacity of R;isc;,i = 1,2, .. .,n Water flows into R; at time t at a rate r;(t), and
the demand at time ¢ is d (¢). The maximum rate at which water can be fed from R;
to meet demand is f;, a constant. If more water flows into any reservoir than it can
hold, the rest is spilled to waste, and water may not be fed back into reservoirs.
Subject to these constraints, we wish to meet as much as possible of the demand
during the time interval [0, T°].

Let x;(t) denote the rate at which water is fed from R, at time t. The feeder
constraints can then be expressed

0<x()<f,, tel0,T], i=12...,n 3)

Let w; (t) denote the rate of spillage from R, at time t. The storage constraints are
T

0< J [r.x)—x;(r)—w;(r)]dr+s; < ¢, te[0,T], i=1,2,...,n, (4
0

where s; is the amount of water stored in R, initially. The reservoir control
problem can then be stated as

maximize jr[ i X (t)] dt

o Li=1

subject to (3) and (4), and the further constraints that the total rate of feed is no
greater than the demand, that is

Y x(<d@. tel0,T],
i=1

and that
w;(t) =0, te[0,T], i=1,2,...,n

This problem is obviously a special case of the bottleneck problem of the
previous section. To see how it can be posed as a continuous-time network-flow
problem, consider the capacitated network Q(t) shown in Figure 1.1. This has a
storage node representing each reservoir. An arc of capacity f; connects R; to a
single node D, of zero storage capacity, which is in turn connected to the sink B,
by an arc of capacity d(t). Conservation of flow at this zero-storage node ensures
that the total feed is no greater than d(t). Inflows are represented by an infinite-
capacity arc connecting the source A, to the infinite-storage node D,, which is
connected by arcs of capacity r, (t), r,(t), . . ., r,(¢) to the reservoirs. Spillage is
represented by flows in infinite capacity arcs connecting the reservoirs to D, .

Continuous-time network flow problems in which there is no storage are an
essentially straightforward extension of the static case. The solution to such a
problem is obtained by maximizing the instantaneous flow at each time.
Assuming that the problem data are well enough behaved to allow us to choose
these instantaneous flows appropriately, then the maximum flow over a time
interval is just the integral of the instantaneous maxima. Of course, the problem
cannot be solved like this in practice, as the number of flow maximizations
involved is infinite. In reality, one uses parametric programming techniques to
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Figure 1.1 The network Q(t) for the reservoir control problem

find the times when the maximum-flow regime changes, and relies on the good
behaviour of the problem data to ensure that these are only finite in number.

The presence of non-zero storage capacities complicates the problem a good
deal. The effect of storage is to link flows at different times. In a discrete-time
formulation, this can be dealt with by considering a number of copies (one per
time epoch) of the basic network, with directed arcs to represent storage capacity
linking successive copies of each node at which storage is allowed. The result of
this construction is an augmented network for which the maximum flow can be
computed by the Ford—Fulkerson algorithm, and this provides the solution to the
original problem.

One approach to the continuous-time problem is to approximate it using a
discrete-time formulation. While this is clearly a workable method, the augmen-
ted network will be very large if a fine discretization is needed. Moreover, one feels
that the discretization may hide essential structural features of the solution, and it
is natural to ask whether a treatment in continuous time is possible. We shall see in
Chapter 6 that the Ford—Fulkerson algorithm can be extended to the continuous-
time problem.

1.2.3 Cutting and filling

A road built on undulating terrain does not usually follow exactly the contours of
the land, but is supported on embankments and run through cuttings, so as to
reduce the number and severity of the gradients. In building the road, large masses
of earth have to be moved to create the cuttings and embankments. It is
advantageous if the total amount of earth needed for embankments is roughly
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equal to the total amount removed from cuttings, to avoid large-scale importation
or dumping of earth. Even when this is so, it is necessary to plan the movements of
earth to minimize their total cost.

Suppose we have a stretch of road from A to B. Let s denote distance along the
route from A, and let ‘¥ (s) be the planned elevation of the road above the terrain.
Let c(s, s') denote the unit cost of moving earth between points at distances s and
s" along the route from A. Let n (s, s') ds ds’ be the quantity of earth moved from
within the section (s, s + ds) to within the section (s’,s’ + ds’). Then the total cost
of moving earth is | ¢ (s, s")n(s,s’) ds ds’. This has to be minimized, subject to

Jn(s, s')ds =¥, (s) for all s',

~[7:(5, s')ds" = W,(s) for all s,

n(s,s’) =0 for all s, s',
where ’
¥, (s) = max {¥(s),0},

¥,(s) = max {—¥(s),0}.

Similar ‘cutting and filling’ problems arise in levelling a plot of land, or moving
a mass of earth in three dimensions to form an earthwork. The study of such
problems has a long history, actually initiated in the study of military operations
involving earthworks. As is apparent, the problem is an infinite-dimensional
version of the well-known transportation problem of linear programming.

We shall give a full description of this problem in Chapter 5. Here we just note
that the problem in more general form is

minimize j c(x,y)dn
X xY

subject to Pin=p,,
Pym=p,,
=0,
where p, and p, are prescribed measures on two sets X and Y; n is a measure on
X xY, to be found; P, and P, are the operators which project measures on
X xY onto measures on X and Y respectively; and c¢(x, y) is a given continuous
function on X xY. The form of the problem stated originally occurs

when 7 is an absolutely continuous measure, so that for any measurable set
ScXxY

n(S)=Jn(x, y) dx dy.
N



