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PREFACE

This was the first IBERICOM conference. IBERICOM was intended as a periodical
forum for technical and scientific knowledge exchange in Iberic Countries.

Portugal was proud to be the stage of this memorable conference on Data Communi-
cations which was made possible through the efforts of API (the Portuguese pro-
fessional society “Assogiacdo Portuguesa de Informitica”), together with IFIP TC6.

During the three days about thirty papers were presented in 10 technical sessions
covering such subjects as Protocol Specification, Testing and Verification, Network
Management, Performance and Inter-Netting. Some of the papers were of excellent
quality and of great interest, as could be inferred from the reviewer’s comments.

This conference gave an accurate sample of the problems which deserve world-wide
attention of researchers and it provided the opportunity for these researchers to
meet. In addition it lent itself as a perfect occasion for presenting Portuguese, as
well as Spanish activities in Data Communication. Accordingly, the aim of this
event, which was to promote the exchange of knowledge and experience between
all the participants, has been fully achieved.

A great effort was made to organize such a conference and I am indebted and thank-
ful to all the people involved. I also want to thank the Caloust Gulbenkian Foun-
dation and the Instituto Nacional de Investigag2o Cientifica for their generous con-
tributions which made IBERICOM 87 possible.

This book is a collection of most of the papers which were presented at the con-
ference.

Alexandre Cerveira
Program Committee
Chairman
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A REVIEW OF FORMALISMS FOR THE SPECIFICATION OF COMPUTER
COMMUNICATION PROTOCOLS (invited paper) *

Vasco Freitas

Centro de Ciéncias e Engenharia de Sistemas
Universidade do Minho, 4719 Braga, Portugal

This paper reviews semiformal and formal specification methods curren-
tly being used for communication protocols. The review is informal and
descriptive, draws from recent published work in the field and intends
to address a significant number of tools. Verification techniques are
also discussed.

1. INTRODUCTION

A specification of a product is a description of the way it is intended to
behave, a predicate containing free variables, each of which standing for some
observable aspect of the behaviour of the product [HOAR85]. It 1is a clear,
complete and precise statement of properties of the product.

Specification methods may be broadly classified as informal, semiformal and
formal [TURN84]. Although there is no clear definition of formality the common
view 1is that a formal language consists of symbols plus rules for combining and
manipulating symbolic expressions.

Fig.l shows a classification given by Turner [TURN84] that categorises speci-
fication methods under a number of general headings.

Informal methods 1lack any form of mathematical basis. Natural language,
though a convenient and natural way of expression, lack in precision and is
often ambiguous. Diagrams are then often used to complement textual specifica-
tions, flowcharting being an example and exist in varied forms. Hierarchic
decomposition techniques force specifications to be given at a high level first
and then refined down into smaller parts. This technique merely make specifica-
tions more systematic.

specificat??n methods

r
intornal semitgrmal fogmal

f | ; .
natural diagrams h1er§rch1c

language decomposition
programming state
languages machines
r | o |
algebras grammars axiomatic nLt temporal

methods theory logic
Fig. 1 Classification of specification methods [TURN84]

In semiformal methods, specifications are given some sort of mathematical
rigour, the emphasis being less on proofs of properties and more on conveying

* Work sponsored by the Instituto Nacional de Investigacio Cientifica, Portugal.



2 V. Freitas

ideas in a readily understood form. Formal methods, which possess a richer
mathematical structure have the great advantage of precision and that formal
proofs may be conducted.

Computer software, is a critical component of computer systems and hence need
to be accurately specified and validated before implementation can start. In
particular, Computer Communication Protocols, a class of real-time software,
pose specific specification and development problems due to their asynchronous
and concurrent nature.

The OSI model of reference that has been standardized by ISO [IS083] and
CCITT [CCIT85]), describes data communication systems as a series of layers, each
providing services to the layer above. Each layer involves two types of
specifications: service specifications and protocol specifications. The former
is the abstract, implementation independent, definition of the functions
provided by a particular layer (N) to the layer above (N+1), including the end-
to-end significance of the services. The later define, at a lower level of
abstraction, the peer-to-peer interaction of objects necessary to perform the
layer N service, assuming services provided by the level N-1 below.

Validation is understood to mean all the actions necessary to show (or make
shure) that a specification meets the communication requirements for which it is
being designed.

Verification is an aspect of validation aimed at showing that certain
protocol properties hold. Properties of interest are safety which ensure that
only correct things will happen; liveness, something will eventually happen and
performance, things will happen fast enough.

The purpose of this paper is to review and discuss the most commonly used
formalisms for the specification of Data Communication Protocols. Examples are
drawn from a transport layer service and the Alternating Bit Protocol (ABP)
[BART69], where the terms message and packet refer, respectively, to the user
defined abstract contents (data) and to the result of appending a sequence
number (0/1) to a message. The ABP assumes that packets can be lost or
duplicated in the transmission medium but not otherwise corrupted. A more
formal and detailed comparison and evaluation of techniques can be found in
[VENK86] and [COST86].

2. SEMIFORMAL SPECIFICATION METHODS
2.1. State Transition Models (Simple and Extended)

State Transition Models stem from the theory of finite state automata. This
theory is closely related to the theory of grammars and networks. State
Transition Models are based on the concept that a protocol can be represented
as a Finite State Machine FSM = {S,I,O,T,P} where S, I and O are the sets of
states, inputs and outputs and T and P are the state transition and output
functions respectively (T:IXS —= S, P:SxI —= 0). Ia Simple FSM models each state
explicitly records all the information necessary to describe protocol
behaviour, including all the acceptable events that may lead to a transition.
Because large protocols have complex representations which become difficult to
understand, Extended FSM models reduce- the number of distinct states by
grouping some of them together and associate context variables to states to
distinguish between them.

A FSM may be represented graphically by drawing circles to represent
distinct states and directed arcs connecting them, to represent transitions.
Arcs are labeled with the inputs that lead to the transition [GOUD84; RUDISS].
Semantic actions expressed in some form of imperative language (like PASCAL or
PL/I) are then often added to this graphic representation, to facilitate its
translation to some other form of representation (algorithmic or implementation
language) .

Graphical models have the advantage of a great descriptive power, which is
rapidly overcome if the number of states increase too much leading to diagrams
difficult to follow. Furthermore, although verification of some properties can
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be made over the graphical model, there is no method of doing graphically a
thorough validation of the protocol description. State Transition Diagrams, have
been extensively used to describe or specify protocols: eg, CSMA/CD [IEEES?],
HDLC [BOCH80], CCITT recommendations [cCIT85), etc. Fig.2 §hows a state m§ch}ne
diagram of a simple data transfer service. The service prov1de§ for transmission
of one message at a time from a fixed sender to a fixed receiver. The sender
must wait until the previous message is received before sending the next one.
There is no posibility of message loss, duplication or corruption.

UserSend (msg) Sending
Buffer —EmptyoMSG

Sent =—SentoMSG SendComplete

Ready To
Receive

UserReceive

ReceiveComplete ¢
Reéeived=ReceivedoMSG

" Received =ReceivedeM3G

Fig. 2 State machine of a simple data transfer service

The verification technique most commonly used in FSM representations 1is
Reachability Analysis (total or parcial) which involves the construction of a
reachability tree describing all (or some of) the states that may be reached
starting at a given initial state. The generation of the global state space 1is
easily automated, but the major often quoted disadvantage of this technique is
the state space explosion [BOCH80b; MERL79] that is, the rapid growth of the
number of states to be analysed. Although techniques such as partial
specification, sublayer decomposition and state classification by assertions
have been developed to restrict this difficulty, in general, the analysis in
state machine representation requires large computacional resources.

SDL

The Specification and Description Language (SDL) [CCIT85] is a standardized
description technique for application during the development of initial protocol
and service specifications, for communication among designers, to increase the
degree of accuracy, readability and comprehension and for the formal
presentation of specifications published in CCITT recommendations.

SDL 1is a graphical language based on the concept of communicating sequential
processes modelled as extended finite state machines. Recommendation X.250
[cCIT85], defines the semantics of a PASCAL-oriented language in terms of  the
SDL common 1language which allows for the translation between them and the
production of a program-like form of SDL.

2.2. Programming Languages

High level programming languages such as ALGOL, PASCAL or PL/I have been used
[ECMA82] for the specification of algorithms. PDIL [VALE84] and IBM's FAPL
[POZE82] are based upon these. Being real implementation languages they are not
suitable for abstract specification as they rely on the informal understanding
of the reader. In favour of their use is the argument that they are machine
independent and so appropriate for specification. Very high-level languages such
as those employed in functional and logical programming [HEND80; CLOC84] have
given the elements of the language a precise mathematical meaning allowing
properties to be stated declaratively. Specification programming languages are,
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in general, based on the Extended FSM model.
ESTELLE

The Extended State Tramnsition Language, ESTL, also known as ESTELLE, was
developed by the ISO Formal Description Techniques group in collaboration with
CCITT. ESTELLE is now a draft proposed standard within ISO to be wused by
standards committees for the specification of data communication protocols
[1S085b] .

In ESTELLE, a protocol system is specified as a set of modules components
interconnected via channel subsystems. Each module is a discrete state machine
where state transitions and output functions are specified in PASCAL-like code.

A channel is a full-duplex instantaneous signal transmission system which can

Specification ABProtocol; |top level module bodyl
we -« «.; \var, type, and channel definitions}
module Alternating_bit_type process {module header definitions}
(U:U_access_point (Provider) common queue;
N:N_access_point (User) common queue; <paramlist> param Name:Cep_type);
ee o« ..; |other module headers)
body Alternating_bit_body for Alternating_bit_type; {module body definitions}
var Data_transfer: Data_transfer_type; Timer: Timer_type;
const Retransmit_time = ...; Empty = ...; ...;
type Msg_type = record ... end; .....;
channel S_access_point (User, Provider);
by User: TIMER_request; by Provider: TIMER_response;
module Data_transfer_type activity
(U:U_access_point (Provider) common queue;
N:N_access_point (User) common queue;
S:S_access_point (User) individual queue; param number:Cep_type);
module Timer_type activity
(S:S_access_point (Provider) individual queue; param Time:integer);
body Timer_body for Timer_type; external;
body Data_transfer_body for Data_transfer_type;
var B: Ndata_type; Send_seq: Seq_type;
state: (ACK_WAIT,AB_P); .. .. ..;
initialize |(initialization of data transfer activityl
to AB_P
begin Send_seq := 0; ... end;
transition
from AB_P
to ACK_WAIT
when U.SEND_request
begin P.Msgdata:=Udata; P.Msgseq:=Send_seq;
Store(Send_buffer,P); output N.DATA_request; ...
end;
e o« o« «+; lother state transition definitions)
end; {of data transfer activity body and of module declaration part)
e« =« «.; lother module bodies)
initialize {initialization part of Alternating bit_bodyl
begin init Data_transfer with Data_transfer_body(Name);
connect Data_transfer.S to Timer.S;
attach U to Data_transfer.U; ...
end;
end; (of the Alternating bit_bodyl
initialize {initialization part of the specification}
begin ... end
end. |of specification}

Fig. 3 Sections of a specification of the ABProtocol in ESTELLE [ISO085b]
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be invoked by either of two modules designated as USER and PROVIDER. Modules and
channels can execute concurrently.

The total state set of a module consists of a major finite state set whose
values are represented as state variables and minor states which are auxiliary
program variables. There 1is no criterion to categorize the state space of a
protocol into major or minor states. The choice is subjective.

The primary components of a module specification are the header and the body.
Module headers make explicit any interaction points associated with the module
(formal parameter 1list, exported variables) and are given a header-type
identifier which identifies the module as a member of one of two classes:
process or activity. There are rules constraining parallel execution aimed at
avoiding deadlocks in an environment of shared data and assure synchronization.
Processes may run in parallel with others of the same class and level of
hierarchy. Activities must be at the lowest level of the hierarchy subtree and
those which are children of the same parent may not runm in parallel.

Module bodies consist of a declaration-part, as in PASCAL, an initialization-
part defining the initial state of the machine, a transition-declaration-part
and a termination-part that defines a procedure which is automatically executed
before the module and its resources are released. ESTELLE defines a set of
operations on modules and interaction points. Modules may execute concurrently
but the use of PASCAL constructs within a module renders some intra-module
activity as strictly sequential. ESTELLE cannot monitor all protocol interface
situations. )

Fig.3 illustrates the structure of a specification in ESTELLE of the
ABProtocol. The protocol machine has two states: AB_P and ACK_WAIT [ISO85b].

3. FORMAL SPECIFICATION METHODS
3.1. Petri Net Models

The theoretical applicability of Petri nets as a descriptive model for
protocols is broader than, although close to, FSM models. In particular, Petri
nets may be used to represent machines with an infinite oumber of states.
Basicaly, it is a graphical model having the disadvantage of the rapid growth of
the net with the complexity of the protocol.

In Petri nets, nodes are used to model conditions, transition bars are used
to model events and directed arcs connect nodes to bars and bars to nodes. When
a condition holds, a token is placed in the correspondent node and a transition
is fired if and only if all nodes leading to a transition bar have tokens (i.e.
a transition occurs if and only if all the necessary conditions hold [MERL79]).

To verify a Petri net specification, a Token Machine has to be built which
identifies all possible system states and state transitions similarly to what is
done in FSM reachability analysis.

To adapt Petri net representation to the specific characteristics of
communication protocols new classes of nets were developed. X-Transition Nets
allow the specification of alternate paths for a transition through the use of
resolution and transition procedures [NUTT72]. In Timed Petri Nets it is
possible to specify the minimum and maximum times in which a tramnsition may
occur. The two methods may also be combined together [DIAZ82; DANTS80].

In spite of the added facilities, Petri nets are limited by the complexity of
the protocols vwhich lead to complex and confusing nets and to time consuming
verification procedures. Petri nets are not suitable for the divulgation of
protocol specifications.

3.2. Algebraic Languages

An algebra is a set of objects, operators for combining objects and axioms
that describe the properties of the operators and equivalence relations between
expressions. Objects of interest are symbols and Abstract Data Types (ADT).

There are algebraic techniques better suited for specifying static
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characteristics such as properties of data structures or sequencial systems.
Other tecniques exist for the specification of dynamic characteristics such as
the behaviour of concurrent systems.

In order to specify concurrency by algebraic methods, a system is considered
as a collection of processes which communicate via channels. A process is a
sequence of actions (eg imperative statements executing in some machine).
Processes progress asynchronously, that is, independently of others, except when
they have to communicate.

Communication behaviour can then be represented in terms of algebraic
expressions and the-algebra axioms give the rules for combining processes.

Algebraic specification languages that support concurrency and have been used
in protocol specification and verification are CSP (Communicating Sequential
Processes) [HOAR85], CCS (Calculus of Communicating Systems) [MILN80], LOTOS
(Language Of Temporal Ordering Spedifications) [BRIN84,85] and CUPID (Columbia's
Unified Protocol Implementation and Design) [YEMI83]. The latter two are based
on Milner's CCS.

AFFIRM [SUNS82], is a running system supporting a set of tools for
interactive mechanical theorem proving of sequencial systems.

AFFIRM

AFFIRM [SUNS82] is an experimental system for the algebraic specification and
verification of user-defined ADTs. Specifications take the form of axioms of the
algebra which are derived from a state transition representation of the
protocol. The heart of the system is a natural deduction theorem prover for the
interactive proof of data type properties and executes as a functional program
written in a PASCAL-like form. It is said to be interactive because it is the
user who develops the proof and the system simplifies propositions using the
specification axioms.

The methodology of specification and verification involves the following
steps:

1) Produce a service specification. Translate its state machine representa-
tion into AFFIRM representation;

2) Validate, at least partially, that the service specification meet the
requirements of the upper protocol layer;

3) Produce the protocol specification. Translate its state machine repre-
sentation into AFFIRM representation;

4) Verify that the protocol specification satisfies the service require-
ments by showing that the axioms of the service specification are
theorems provable from the axioms of the protocol specification.

Fig.4 shows sections of a representation in AFFIRM of the service machine in
fig.2 [SUNS82]. Each state variable becomes a selector function, each state
transition function becomes a constructor and the axioms state how variables are
modified by state transition functions.

In [SUNS82) the ABProtocol is used in a detailed example of a protocol that
provides this service. 1Its specification in AFFIRM is derived from a 6-state
machine defining the protocol. Fig.5 lists some sections of this specification.

After the axioms of a service specification have been rewritten as theorems
these are then proved from the protocol axioms (fig.5). The proofs often require
lemmas. As an example the following theorem is a lemma concerning the
relationship between the sender's current sequence number SSN and the sequence
numbers of the packets in the medium

theorem PktsO1dPS,
all s, m, med(Pending(s) ~= NewQueueOfPacket
and PktsOld(s,med)
imp PktsOld (ProtocolSend(s,m),med));

which says that if there is a packet waiting to Dbe acknowledged
(Pending (s) "=NewQueueOfPacket) and packets in the medium med are old, that is,
then they are still old after a ProtocolSend event, ie, after the protocol tries
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type DataTransferService; {state machinpe}
needs types Message, QueueOfMessage, ControlState;
declare s: DataTransferService, m: Message;
constructors InitializeService, UserSend(s,m), SendComplete(s),
UserReceive(s), ReceiveComplete(s): DataTransferService;
selectors Buffer(s), Sent(s), Received(s): QueueOfMessage,
State(s): ControlState;
interface Induction(s): Boolean;
axioms {State:}
State(InitializeService) == ReadyToSend,
State(UserSend(s,m)) == if State(s) = ReadyToSend then Sending
else State(s),
State(SendComplete(s)) == if State(s) = Sending then ReadyToReceive
else State(s),
axioms |Sent:}
Sent (InitializeService) == NewQueueOfMessage,
Sent (UserSend(s,m)) == if State(s) = ReadyToSend then Sent(s) Add m
else Sent(s):
axioms {Received:}
Received (UserReceive(s)) == if State(s) ReadyToReceive
then Received(s) Add Front (Buffer(s))
else Received(s),
axioms {Buffer:}
schena Induction(s) == ...;
nochange State, Sent, Received, Buffer;
end {DataTransferServicel;

Fig. 4 Representation in AFFIRM of service machine of fig.2

type ABProtocol; |state machine)
needs types Message, QueueOfMessage, Packet, QueueOfPacket, Medium, Bit;
interface Induction(p): Boolean;
axioms {Peanding:}
Pending (ProtocolSend (p,m)) == if Pending (p)=NewQueueOfPacket
then NewQueueOfPacket Add MakePacket (m,SSN(p))
else Pending(p),
Pending (ReceiveAck(p)) == if Seq(Front (ReceiverToSender(p))) = SSN(p)
and ReceiverToSender (p) ~= InitializeMedium
then NewQueueOfPacket
else Pending(p);
axioms {other axioms} ...;
schema Induction == ...;
end; {ABProtocol}

type Message;
declare m:Message;
axiom m = m == TRUE;
end; {Nessagel
ve «o oo oo o.; lother types}
lAsserted procedures, ProtocolSend(m:Message;var success:Boolean), ...:}

ee ee se ss ea esp

Fig. 5 A section of the AFFIRM specification of the ABProtocol 'SUNS82]




