Emmanuel Gaudin
Elie Najm

Rick Reed (Eds.)

SDL 2007:
Design for
Dependable Systems

13th International SDL Forum
Paris, France, September 2007
Proceedings

&4

LNCS 4745

@ Springer

Emmanuel Gaudin Elie Najm Rick Reed (Eds.)

SDL 2007:

Design for
Dependable Systems

13th International SDL Forum
Paris, France, September 18-21, 2007
Proceedings

@ Springer

Volume Editors

Emmanuel Gaudin

PragmaDev SARL

18, rue des Tournelles, 75004 Paris, France
E-mail: emmanuel.gaudin @pragmadev.com

Elie Najm

ENST

Département Informatique et Réseaux

46, rue Barrault, 75634 Paris Cedex 13, France
E-mail: Elie.Najm@ENST.fr

Rick Reed

Telecommunications Software Engineering Limited

The Laurels, Victoria Road, Windermere, Cumbria LA23 2DL, United Kingdom
E-mail: rickreed @tseng.co.uk

Library of Congress Control Number: 2007934912

CR Subject Classification (1998): C.2, D.2, D.3, E3, C.3, H4

LNCS Sublibrary: SL 5 — Computer Communication Networks and
Telecommunications

ISSN 0302-9743
ISBN-10 3-540-74983-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-74983-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12161393 06/3180 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

4745

Preface

This volume contains the papers presented at the 13" SDL Forum, Paris, France
entitled “Design for Dependable Systems” and reflects the intent to have a bal-
ance between experience reports and research papers related to System Design
Languages.

The language that was at the heart of the first few SDL Forums was the
ITU-T Specification and Description Language defined in Z.100, and the appli-
cation domain was almost entirely fixed-line telephone communication. Mobile
telephony was for the super-rich and electronics in cars was just for radios.

Ever since its inception, 30 years ago, the Z.100 language has been used
for model-driven development in the telecommunication industry. Nowadays,
model-driven engineering is a must for all industries and has been generalized
by OMG to all application domains as covered by a paper on an automotive case
study in this volume. What has been happening over the past few years is that
the infrastructure has been put in place providing good support for the model-
driven paradigm, so that the economic benefit of the approach makes it more
of a necessity than a choice for designing dependable systems. The experience
report from Motorola in this volume underlines this trend.

Although the SDL Forum Society that organizes these SDL Forums has it roots
in telecommunications, the System Design Languages needed for modeling in that
industry are applied in other real-time engineering domains such as aerospace,
the ubiquitous Bluetooth devices, and railways. For the last few years all model-
ing languages and technologies have had a tendency to converge towards UML,
and since UML 2.0 and its profile definition capability came out, there is now an
amazing number of diverging profile proposals based on older technologies. This
was reflected in the conference programme with tutorials on SysML, SDL-RT,
MARTE, and Z.109 covering different aspects of system modeling. An example
in this volume is the paper that utilizes the UML 2.0 Testing Profile.

This latter paper is one of a number that shows the continuing interest and
developments in the ITU-T Testing and Test Control Notation (TTCN). Al-
though much of the evolution of TTCN has been through the work of ETSI,
it is still largely seen as an I'TU-T standard. In some ways this makes sense as
ITU-T re-publishes the ETSI revisions of TTCN as a truly international standard
(Z.140 series). TTCN is widely used with the ITU-T Message Sequence Chart
(Z.120) and Specification and Description Language (Z.100 series). These are
also used with another ITU-T product, Abstract Syntax Notation One (X.680
series), which is used to define protocol data units with their associated encoding
rules (X.690 series). However, these languages are not thought to be adequate to
capture requirements. A new language for User Requirements Notation (Z.150
series) is in progress, which includes Use Case Maps — covered by another paper
in this volume.

VI Preface

So with all these ITU-T languages for system design, what is the role of
UML?

UML is seen, as its name implies, as a unifying concept between languages.
Because UML leaves a number a semantic issues open and even states frequently
that there is no specific notation for a particular concept, it is in reality largely
a framework that has to be populated with specific semantics and notations
before it can be used to completely develop products. One route is to choose
a particular UML tool, whose implementation (such as writing actions in C or
Java) will have fixed certain issues, but at the cost of potentially being locked
into that tool. Another route is to provide UML profiles for existing languages,
thus not only binding UML to the semantics and notation of the language, but
also providing some glue between different notations. It is the latter route that
the ITU-T is taking (albeit rather slowly), with Z.109 being approved in 2007 as
the UML profile for Z.100. Other profiles are in the [TU-T work plan for X.680,
7.120, Z.140 and Z.150. A related path is presented in the first paper in the
volume, providing a meta-model for (a subset of) Z.100.

UML also has another role. If you ask someone who claims to be using UML
which diagrams they use, often the reply will be that they mainly use Class Dia-
grams and Object Diagrams. The other 11 types of UML diagrams are used less
frequently and some quite rarely (if at all). This is partly because the Class Dia-
grams and Object Diagrams meet a need that is not well met by other notations.
Even the ITU-T in its 1996 Z.100 SDL+ methodology supplement suggested us-
ing diagrams in the Object-Modeling Technique notation (a forerunner of UML
subsumed into UML in the unifying process). This is why it is natural to use
these diagrams with the ITU-T languages: UML is frequently used for class and
object modeling with Z.100 and other state machine languages in this volume
and elsewhere. UML therefore not only provides the glue, but itself provides an
important member of a set of System Design Languages.

Although the original Z.100 of 30 years ago was a paper and pencil language,
none of this engineering today would be practical without computer-based tools
because the systems in question are much more complex. This is evident from
most of papers. As well as tools to directly support System Design Languages,
included in this volume are papers on a real-time operating system and the use
of probability modeling to analyze realistic-size networks without encountering
state space explosion. At first glance, it may seem that these papers are not
relevant, but you will probably change your mind when you read the papers, as
a key issue in both cases is performance. There are many factors involved in the
design for dependable real-time systems, so it is hard to predict what might be
relevant for a future SDL Forum.

Thanks

A volume such as this could not, of course, exist without the contributions of
the authors, who are thanked for their work.

Preface VII

The Programme Committee were also the reviewers of the papers, and are
thanked for their work selecting the papers and the programme.

Irfan Hamid of ENST is thanked for his editorial assistance in preparing this
volume.

The organization was greatly assisted by the various sponsors that provided
valuable support. SDL 2007 was sponsored by:

— Centre National de la Recherche Scientifique

— Cinderella

— France Telecom

— PragmaDev

Télécom Paris - Ecole Nationale Supérieure des Télécommunications (ENST)
Telelogic

July 2007 Emmanuel Gaudin
Elie Najm
Rick Reed

Organization

Bach SDL Forum is organized by the SDL Forum Society with the help of local
organizers. The Organizing Committee consists of the Board of the SDL Forum
Society plus the local organizers and others as needed depending on the actual
event. For SDL 2007 the local organizers from PragmaDev and ENST need to be
thanked for their effort to ensure that everything was in place for the presentation
of the papers in this volume.

Organizing Committee

Chairman, SDL Forum Society Rick Reed (TSE Ltd.)

Treasurer, SDL Forum Society Martin von Lowis (Hasso-Plattner-Institut)
Secretary, SDL Forum Society Andreas Prinz (Agder University College)
Conference Chair Emmanuel Gaudin (PragmaDev)
Programme Committee Chair Elie Najm (ENST)

Programme Committee

Daniel Amyot (Université d’Ottawa, Canada)
Reibert Arbring (Ericsson, Sweden)

Rolv Braek (NTNU, Norway)

Eric Brunel (PragmaDev, France)

Pierre Combes (France Telecom, France)

Philippe Desfray (Objecteering Software, France)
Laurent Doldi (Isoscope, France)

Anders Ek (Telelogic, Sweden)

Jaqueline Floch (SINTEF, Norway)

Birgit Geppert (Avaya Labs Research, USA)
Reinhard Gotzhein (Universitit Kaiserslautern, Germany)
Jens Grabowski (University of Gottingen, Germany)
Susanne Graf (Verimag, France)

Peter Graubmann (Siemens, Germany)

Loic Hélouét (INRIA Rennes, France)

Paul Herber (Sandrila, UK)

Dieter Hogrefe (ETSI - MTS, Germany)
Eckhardt Holz (University of Potsdam, Germany)
Ferhat Khendek (Concordia University, Canada)
Tae-Hyong, Kim, KIT, Korea)

Shashi Kumar (Jonkoping University, Sweden)
Philippe Leblanc (Telelogic, France)

X Organization

Vesa Luukkala (Nokia, Finland)

Anna Medve (University of Pannonia, Hungary)
Pedro Merino Gémez (University of Malaga, Spain)
Francois Michaillat (Alcatel, France)

Birger Moller-Pedersen (University of Oslo, Norway)
Elie Najm (ENST Paris, France)

Patrik Nandorf (Ericsson, Sweden)

Ian Oliver (Nokia, Finland)

Anders Olsen (Cinderella, Denmark)

Benoit Parreaux (France Telecom, France)

Javier Poncela Gonzélez (University of Malaga, Spain)
Andreas Prinz (Agder University College, Norway)
Rick Reed (TSE, UK)

Manuel Rodriguez Cayetano (University of Valladolid, Spain)
Eldor Rodseth (SystemSoft, Norway)

Alain Rossignol (Astrium, France)

Richard Sanders (SINTEF, Norway)

Amardeo Sarma (NEC, Germany)

Ina Schieferdecker (Fraunhofer FOKUS, Germany)
Bran Selic (IBM Rational, Canada)

Edel Sherratt (University of Wales Aberystwyth, UK)
Martin von Lowis (Hasso-Plattner-Institut Potsdam. Germany)
Thomas Weigert (Motorola, USA)

SDL Forum Society

The SDL Forum Society is a not-for-profit organization that in addition to run-
ning the SDL Forum:

— Runs the SAM (System Analysis and Modeling) workshop every 2 years
between SDL Forum years.

— Is a body recognized by ITU-T as co-developing the Z.100 to Z.109 and Z.120
to Z.129 and other language standards;

— Promotes the ITU-T System Design Languages.

For more information on the SDL Forum Society, see www.sdl-forum.org.

Table of Contents

Model Driven Engineering

A Model-Based Standard for SDL, 1
Andreas Prinz, Markus Scheidgen, and Merete S. Tveit

Model Driven Development and Code Generation: An Automotive Case

ST srsmeamims s sosma Fmems s PENs FETHE §FIREERTE M EREEE £ 19
Michele Banci, Alessandro Fantechi, Stefania Gnesi, and
Giovanni Lombardi

Experiences in Deploying Model-Driven Engineering 35
Thomas Weigert, Frank Weil, Kevin Marth, Paul Baker,
Clive Jervis, Paul Dietz, Yeruan Gui, Aswin van den Beryg,
Kim Fleer, David Nelson, Michael Wells, and Brian Mastenbrook

Testing

TTCN-3 Quality Engineering: Using Learning Techniques to Evaluate

Metric Sets. ..ot 54
Edith Werner, Jens Grabowski, Helmut Neukirchen, Nils Réttger,
Stephan Waack, and Benjamin Zeiss

Using TTCN for Radio Conformance Test Systems 69
Javier Poncela-Gonzadlez, Juan Gomez-Salvador,
Carlos Valero-Rolddan, and Unai Ferndndez-Plazaola

Testing UML2.0 Models Using TTCN-3 and the UML2.0 Testing
Profile s: cwsms ausms smses 08 a5 ims 55556 55758 50,508 50 5wb s masomemenms 86
Paul Baker and Clive Jervis

Language Extensions

Specifying Input Port Bounds in SDL 101
Reinhard Gotzhein, Riidiger Grammes. and Thomas Kuhn

Translatable Finite State Time Machine 117
Krzysztof Sacha

Enhanced Use Case Map Traversal Semantics...................... .. 133
Jason Kealey and Daniel Amyot

XII Table of Contents

Implementation

Automated Generation of Micro Protocol Descriptions from SDL
Design Specifications: sz ss:asins s snmsansmisnsincaniss sgses sasms sasns 150
Ingmar Fliege and Reinhard Gotzhein

Synthesizing Components with Sessions from Collaboration-Oriented
Service Specifications v : snise swins sos b snin s Eaiaiaa i EiFiansms 166
Frank Alexander Kraemer, Rolv Brek, and Peter Herrmann

Experiences in Using the SOMT Method to Support the Design and
Implementation of a Network Simulator............................. 186
Manuel Rodriguez and José Maria Parra

Modeling Experience and Extensions

Consistency of UML/SPT Models, 203
Abdelouahed Gherbi and Ferhat Khendek
Formal Verification of Use Case Maps with Real Time Extensions 225

Jameleddine Hassine, Juergen Rilling, and Rachida Dssouli

Using Probabilist Models for Studying Realistic Systems: A Case Study
OF PaStlyu: cusnmicsmupsmsngsns auias seswssnias 5swssaini 69186 485008 242
Guillaume Chatelet, Benoit Parreauz, and Yves-Marie Quemener

OpenComRTOS: An Ultra-Small Network Centric Embedded RTOS
Designed Using Formal Modeling 258
Eric Verhulst and Gjalt de Jong

SDL Design and Performance Evaluation of a Mobility Management
Technique for 3GPP LTE Systemsc.ccveiunevuerneenesinnnns 272
Tae-Hyong Kim, Qi-Ping Yang, Soon-Gi Park, and Yeun-Seung Shin

Author Index 289

A Model-Based Standard for SDL

Andreas Prinz!', Markus Scheidgen?, and Merete S. Tveit!

! Faculty of Engineering, Agder University College
Grooseveien 36, N-4876 Grimstad, Norway
{andreas.prinz,merete.s.tveit}@hia.no

2 Department of Computer Science, Humboldt Universitit zu Berlin
Unter den Linden 6, 10099 Berlin, Germany
scheidge@informatik.hu-berlin.de

Abstract. Language descriptions have much information captured in
plain (English) text, and even the formalised parts are often informally
connected with the overall language definition. These imprecise descrip-
tions are hardly usable to automatically generate language tool environ-
ments out of the language standard. SDL has already managed to define
syntax and semantics in a quite formal way. Currently, this formality is
connected by using different types of grammars. Meta-models, however,
have proven to be a good way of expressing complex facts and rela-
tions. Moreover, there are tools and technologies available realising all
language aspects based on completely formal and still easily understand-
able meta-model-based descriptions. This paper is about an experiment
of combining all these existing techniques to create a definition of (a
subset of) SDL. This allows to have immediate tool support for the lan-
guage. This experiment includes the language aspects concrete syntax
representation, static semantic constraints, and language behaviour. It
turns out that this is almost possible.

1 Introduction

Model Driven Development (MDD) uses models to describe systems on a higher
level of abstraction. This abstraction, i.e. hiding of much detail, is possible be-
cause models are instances of more and more complex modelling languages,
which provide more and more specific concepts. Therefore, there is a need for
more complex and (domain) specific modelling languages. Furthermore lan-
guages in an MDD environment are only meaningful if they come with a compre-
hensive tool environment. So there are two challenges: creating a human readable
language standard and providing tool support for the language.

It is obvious that it is necessary to have a description of the language first.
We will call such a description a meta-model. Today, there are several language
description techniques and meta-tools that allow to describe and realise single
language aspects like concrete syntax, static semantic analysis, model execution,
or code generation. Tooling can be achieved by manually building language tools
or by creating modelling tools automatically from the language description. In
the latter case, the language description has to be completely formal.

E. Gaudin, E. Najm, and R. Reed (Eds.): SDL 2007, LNCS 4745, pp. 1-18, 2007.
(© Springer-Verlag Berlin Heidelberg 2007

2 A. Prinz, M. Scheidgen, and M.S. Tveit

The contribution of this paper is a combination of existing and new techniques
forming one cohesive language description with the possibility to create a com-
plete tool environment from it. We start with a representative sub-set of SDL
(this sub-set provides all features necessary for the well-known camera example),
and create meta-model-based descriptions that can function as a human-readable
standard and an SDL tool environment including textual and graphical editors,
static semantic checker, and model simulator.

The current SDL standard [8] with its formal semantics specification [7] al-
ready showed that most language aspects can be described formally without
ambiguities. In [3], Prinz et. al. showed that even aspects that are usually de-
scribed informally, like language behaviour, can be described formally allowing
tools to be created from such formal descriptions in an at least semi-automated
way. In [4] we discussed the possibility to use meta-modelling as the basis for in-
tegrating different languages and tools with each other. We already successfully
evaluated the possibilities for automated tool support based on meta-models in
the context of domain specific languages in [10,14].

In this paper we explain how different meta-modelling techniques work to-
gether. We focus on the two main purposes given above: how to present the
language description in a user-friendly way and how to use the description for
generating tools. Although in an ideal world, these two purposes would coincide,
we could not achieve a complete match in this experiment.

The paper is structured as follows. In Sect. 2 we will introduce the different
language aspects that we used in this experiment together with their relation to
each other. The subsequent sections will present the approaches and technologies
that we used to describe the different aspects one by one, namely structure
(Sect. 3), constraints (Sect. 4), representation (Sect. 5), and behaviour (Sect. 6).
Each section contains parts of the SDL language as examples. In the concluding
Sect. 7, we discuss our results and suggest further work.

2 Basics

In [9] meta-modelling is defined as: The construction of an object-oriented model
of the abstract syntax of a language. However, in our article we use the term
meta-model in a wider sense: A meta-model is a model that defines a language
completely including the concrete syntax, abstract syntax and semantics.

As a language description, meta-models can have several aspects that we have
already identified in [10]. Figure 1 shows these aspects. Even though there is no
complete agreement about what parts a language description consists of, these or
similar parts can be identified in most contexts. The picture shows the following
parts.

Structural information for the meta-model includes all the information about
which concepts exist in the domain and how they are related. An example
of this would be a MOF (Meta Object Facility) class diagram. In our under-
standing, this part does just include very simple structural properties and
not more advanced concepts that rely on the use of constraints.

A Model-Based Standard for SDL 3

Constraints

Fig. 1. Structure of a Meta-model

Constraints give additional information about the structure in that they iden-
tify the allowed structure according to additional logical constraints. This
will include first-order logic constraints (e.g. written in Object Constraint
Language (OCL)) as well as multiplicity constraints. In classical compiler
theory these are collected under the name of static semantics and in a meta-
model context they are called well-formedness rules.

Representation describes model serialization syntax and information about
how the models are to be (re)presented to the user. The textual grammars
(concrete textual syntax) are well understood in terms of compiler theory.
When it comes to graphical grammar (concrete visual syntax), there is less
agreement and there are some open research topics.

Behaviour describes how the model is used. This item includes execution of the
model as well as mappings. By mapping we understand a relation between
the model itself and another representation, e.g. in another language. A
typical example would be a compiler from Java to JVM, or a mapping from
a platform independent model to a platform specific model. An execution is
the real run of the model, which is of course only possible if the model is
executable. A typical example here would be a run of a Petri net.

In Fig. 1, the structure is the central aspect and all the other parts relate to
the structure. The constraints have to be connected to the structural elements
that they constrain. The representation parts describe the representation of el-
ements in the structure, whereas the behaviour parts describe a behaviour for
the elements defined in structure.

3 Structure

The structure part of a language description defines an abstract data structure
for models, programs, or specifications written in that language. Like in model-
driven development, object-oriented models in the form of class diagrams, are

4 A. Prinz, M. Scheidgen, and M.S. Tveit

used in most meta-modelling architectures to model structures. These type mod-
els use classes as refinable classifications of entities by means of shared charac-
teristics, modelled with attributes. Associations are used to classify the relations
between entities. Associations are just a special kind of classifiers and actual
links are a special kind of entities.

For a user-friendly description of the language, we use CMOF from MOF 2.0
[11]. CMOF (complete MOF) provides additional concepts to model abstractions
compared to EMOF (essential MOF also part of MOF 2.0), which only defines
a set of basic meta-modelling features. Examples for these additional CMOF
features are property refinements, which allow to relate attributes or association
ends in the context of classifier specialisation.

SdINameSpace +memb: SdINamedElement
0.* |+name : LexicalName
SdiClassifier — 0." | sdiFeature
+featur
? {subsets member}
SdiSignal L tvariable; ggjvariable

{subsets feature} 0..*

ﬁ}

0.*
{subsets variable,ordered}
+parameter

SdiPar

0.+ +variabl% +kind : SdIParameterKind
+ownedAgentType {derived union, redefines variable} 0..
{subsets member} SdlAgentType +ageny| sdiAgent

{subsets feature:
0.*

+kind : SdIAgentKind
1+type

Fig. 2. Classifier concepts in SDL

In terms of languages, classes classify model elements based on the language con-
cept that they instantiate. For example, all the agent types in all the existing SDL
specifications are instances of the agent type concept. The first sample meta-model
part in Fig. 2 describes the language concept agent type as a meta-model class. At-
tributes and associations are used to define the structural characteristics of agent
types: an agent type can contain other agent types, it can contain type-based agents,
it has parameters and variables. The example also shows how characteristics of more
abstract language concepts can be reused. Agent types and signals for example,
are just special SDL classifiers. SDL classifiers have features, like variables or pa-
rameters, as general characteristics. Variables are just one special form of features,
and parameters just one special form of variables. Agent types inherit containment
of variables and parameters and extend their set of features, containing variables
and parameters already, with agents as just another type of feature. Signals inherit
ownership of parameters. Signals also inherit ownership of variables and features,
but only allow parameters as possible variables or features. The redefinition of the

A Model-Based Standard for SDL 5

property variable in signal as a derived union ensures that parameters are the only
possible subset of variables.

Using all the CMOF features to express abstractions, enabled us to compose
a meta-model for SDL from a predefined library of abstract language concepts.
We re-used the UML infrastructure library accordingly to create the SDL meta-
model. The UML infrastructure library was used to define the UML, so this
approach makes sure that the two languages UML and SDL have a common
base in their underlying language infrastructure.

{subsets feature

SdiAgentType 0.* +agent SdlAgent
+agentType

+kind : SdIAgentKind [
1

+agent | 0.1 +lopposite
+agentType 0t

1 +channelEnd| SdiChannelEnd
+gate | . ate 0.*
{subsets member} "~ A
SdiGate

+target 17 +source
1

0..'], +send 0..',], +receive
SdiSignal SdiChannelPath

signal
0.* +path | 1.2
1 § +channel

0..* +channel SdiChannel
{subsets member}

Fig. 3. Concepts for communication structures in SDL

Figure 3 shows another part of the SDL structure meta-model. This meta-
model part covers the concepts of the sample specification in Fig. 4, which shows
a block type definition (the entire example can be found in [15]). This block type
definition is shown twice: in SDL syntax and as an object diagram, instantiating
the SDL structure meta-model.

After having defined the structural meta-model in MOF 2.0, we had to find
a proper tool supporting such descriptions. Although it is possible to find tools
for MOF 2.0 (e.g. [13]), we decided to take a simpler tool which allows better
integration with the other aspects as described in the next sections.

For the language tooling, we use Ecore (the meta-modelling language of EMF
[1]). Ecore is a simple language allowing to express structures with just a few
basic concepts. It is similar to EMOF. In Ecore the expressive power of the
CMOF additional concepts has to be implemented manually, for example with
OCL-expressions. Because of its simplicity, Ecore has the advantage of a clearer
mapping to programming languages and more extensive tool support.

Compared with the SDL standard, the MOF-based structure definition yields
almost the same object structure of a specification. The advantage is that it has
much richer classification of the language concepts.

6 A. Prinz, M. Scheidgen, and M.S. Tveit

Block Type Cam 1(1)

P-WebCam \Gout [(Camera_out)] Gex [(Camera_oul)]

>

SR1)
[l Camera_in)] [(Camera_in ,]
; signal
[(Memory_out)] /* user input */
SR2 TriggerPress, I* pressing the trigger button */
TriggerRelease, /* releasing the trigger button */
in Button1, I* pressing button 1 */
Memory_in
G [(womeY)] Button2, /* pressing button 2 %/
M Memo Button3, * pressing button 3 */
Ry Button4, I* pressing button 4 */
I—] ownedAgentType |
J 1
type
gale gate

—| Gext:SdiGate Gout : SdiGate
gate gate ahiifial agent P SdlAgent gate gate

SR1:SdiChannel

path

source source
-I.;.Ssil!:hannelﬁm _ SdiChannelEnd
|

path

Fig. 4. Part of an example SDL specification and its model representation

4 Constraints

Structure models are designed to define valid graphs of objects and links, by
defining classes and associations. To complement these concepts of constructive
modelling, we use boolean expressions to constrain the possible instances of a
meta-model.

To define such static semantic rules for SDL, we use the Object Constraint
Language (OCL) [12]. OCL is specifically designed as an expression language for
object-oriented structures. It allows to define expressions based on types defined
in a meta-model. These expressions, defined at meta-level, can then be evaluated
on models. OCL is a statically typed language. Each formula is defined in the
context of a meta-model type. Based on this context type an expression can use
the features of the corresponding meta-element to navigate through models. OCL
uses several predefined operators and functions to combine feature values into

