INTRODUCTION TO COMPUTERS,
STRUCTURED PROGRA MMING, AND APPLICATIONS

Module

A
Applications and Algorithms

1n Computer Science
C.WILLIAM GEAR

e

INTRODUCTION TO COMPUTERS,
STRUCTURED PROGRAMMING,
AND APPLICATIONS

Module

A

Applications and Algorithms
in
Computer Science

C. WILLIAM GEAR

University of Illinois
Urbana, Illinois

S R A

SCIENCE RESEARCH ASSOCIATES, INC.
Chicago, Palo Alto, Toronto, Henley-on-Thames, Sydney, Paris, Stuttgart

A Subsidiary of IBM

Compositor Advanced Typesetting Services

Acquisition Editor Robert L. Safran
Project Editor Jay Schauer
Special Editorial Assistance Stephen B. Chernicoff
Text Design Judy Olson
Cover Design Michael Rogondino

© 1978 Science Research Associates, Inc. All rights reserved.
Printed in the United States of America.

LIBRARY OF CONGRESS CATALOGING IN PUBLICATION DATA

Gear, Charles William.
Applications and algorithms in computer science.

(His Introduction to computers, structured pro-
gramming, and applications)

Includes index.

1. Electronic data processing. 2. Electronic
digital computers—Programming. 3. Algorithms.
I Title. 1. Series: Gear, Charles William. Intro-
duction to computers, structured programming, and
applications.

QA76.G37 001.6'4 77-25546
ISBN 0-574-21189-6

10 9 87 65 43

Preface

This version of Module A (Algorithms and Applications) is intended
for use in a computer-science environment. Using the programming
principles and informal language developed in Module P (Programming
and Languages), a variety of techniques and methods of solution are
presented that are useful in wide classes of fundamental numerical
and nonnumerical problems. The material is organized so that later
chapters depend minimally on earlier ones, to allow the instructor
flexibility in the selection and ordering of topics. To help the instructor,
a diagram appears at the beginning of this module, showing specific
prerequisites for each chapter.

In a one-semester course, Module A can be used to amplify the ma-
terial in Modules P and C by selecting example applications of interest
to the students. For example, Chapters Al, A3, A4, A12, and A13 could
be taught in order, skipping the intervening chapters. Alternatively,
Modules A, C, and P together provide enough material for a two-semester
computer-programming/computer-science sequence. The first semester
can cover the first eight chapters of Module A along with most of
Modules P and C and a language module; the remainder of Module A can
be taught in the second semester, along with a second language if de-
sired. The language modules are tied so closely to Module P that few
additional ideas would have to be introduced: essentially it would only
be necessary to provide exercises in the syntax of the second language.
In a two-semester sequence, Chapters P10 and P11 could also be left for
the second semester.

Module A can also be used in a separate course in computer appli-
cations for students with adequate background in a nontrivial pro-
gramming language. The informal language used to describe algorithms
is natural for anyone with moderate exposure to a structured language;
for students with experience only in Fortran or Basic, a quick review of
the General Introduction and a brief discussion of the basic structured
language constructs would be needed. '

MODULE C

G4: Computers/compilers

MODULE P MODULE A

C P3: Control | g —————1 »C A1: Algorithms

\

A2: Bisection

(P4: Arrays H A3: Search/sort
(P9: Data Il)———V(A4: Pointers

\
(A5: KWIC indexes)

A6: Computer-aided instruction

(p8: Control Il A7: Monte Carlo

A8: Evaluating functions

- (A9: Linear equations)

(A10: Numerical error

A11: Simulation

(P10: Procedures Il
A12: Trees

(P11: Recursion }/’/ V
(A13: Polish notation)

——————= Required

————— == Recommended (A14: Graphs

(' A15: Critical-path probleer

Prerequisite structure for Module A

Al
A2

A3

A4

A5
A6

A7

A8

A9

Al0

Contents

Preface
Types of Algorithm

The Method of Bisection
Problems

Searching and Sorting
A3.1 Binary Search
A3.2 Sorting
Problems

Pointers
Problems

KWIC Indexes
Computer-Aided Instruction

Problems
Monte Carlo Methods
Problems

Evaluation of Functions
A8.1 Horner’s Method
A8.2 Linear Interpolation
Problems

Solution of Linear Equations
Problems

Numerical Error

A10.1 Errors in Arithmetic (Rounding Error)
A10.2 Truncation Error

A10.3 Amplification of Errors

Avii
A3

A8
Al3

Al4
Al5
Al8
A25

A27
A35

A37
A43

A47
A48
A51

A53
A54
A56
A59

A6l
A7l

A73
A73
A78
A79

Avi

All

Al2

Al3

Al4

Al5

Problems

Simulation

All.l Continuous Simulation
All.2 Discrete Simulation
Problems

Trees, Queues, and Stacks
Al12.1 Binary Trees

A12.2 Stacks and Queues
Al12.3 Recursion and Stacks
Problems

Polish Notation
Al13.1 Evaluating Polish Expressions

Al13.2 Syntax Analysis and Conversion to Postfix

Problems

Graphs and General Data Structures
Al4.1 Graphs

Al4.2 Internal Representation of Graphs
Problems

The Critical-Path Problem
Al15.1 Finding Critical Paths
Al15.2 Storing Static Graphs
Problems

Appendix: Answers to Selected Problems

Index

CONTENTS

A86
A88
AB9
A93
A103

A106
A106
All4
All19
A120

Al2l
Al128
Al132
Al139

Al4l
Al42
A150
A153

Al54
Al158
Al162
Al165

A166
Al77

Module

A

Algorithms and Applications
in
Computer Science

Before we can write a program, we must design an algorithm to solve
the problem at hand. The design of the algorithm depends strongly on
the structure of the data. For example, the only way to search for an item
in an unordered list is by some form of sequential search, in which each
item is examined in turn. However, if the list is ordered—alphabetically,
for example—we can apply more efficient procedures. Accordingly, we
might consider sorting an unordered list before searching it. We must
decide whether the time needed to sort the list is a reasonable trade
for the time saved in searching it. If only a few items are to be looked
up, it will take more time to sort the list than will be saved on the
searches; but if many items are to be looked up, the saving can be con-
siderable. The design of good algorithms must take into account such
considerations as whether a change in the data structure may lead to a
better method of solution.

Computer applications arise in many diverse areas of activity. In
business, computers are often used for data processing, manipulating
large amounts of data representing company or government files, up-
dating those files, and generating summary reports and records of
individual transactions (weekly pay slips, orders, invoices, airline tickets,
and so forth); information retrieval, which allows managers to examine
the status of company or government files stored in the computer and
spot potential trouble areas quickly; and simulation, the manipulation
of numerical models of the real world. Scientific and engineering ap-
plications include the approximate solution of numerical problems,
correlation and comparison of large amounts of experimental data, and
information retrieval applied to textual data.

Al

ALGORITHMS AND APPLICATIONS IN COMPUTER SCIENCE

Many application areas are concerned with common problems and
methods of solution. Early chapters in this module will examine some
simple problems common to many areas and develop some important

methods of solution. Later chapters will then address more specialized
problems from particular application areas.

Chapter

Al

Types

of
Algorithm

There is no universal set of rules for designing algorithms: each new
problem may need a totally new approach. Indeed, it is this aspect of
computer programming that can be the most pleasurable, providing
a challenge akin to a crossword puzzle or chess problem and giving an
outlet to the ingenuity and creativity of the programmer. There are,
however, a number of basic types of algorithm that can frequently be
used to solve a particular problem.

Five common types of algorithm are given below, followed by ex-
amples and a discussion of each:

e Direct computation—in which the exact answer is obtained by a
sequence of elementary computations.

e Enumeration—in which all possible “answers” are tried in order
to find one that solves the problem.

e Divide and conquer—in which the problem is divided into similar
but smaller problems that can either be solved directly or be further
subdivided by the same technique.

e Jteration—in which a series of increasingly precise approximate
answers are computed until one is obtained that is “close enough.”
(An exact solution would require an infinite number of op-
erations.)

e Trial and error—a type of iteration in which each successive
approximation is based on the degree of error in the previous
approximation.

A3

A4

TYPES OF ALGORITHM

Direct computation. The income-tax computation of Chapter
G2 is an example of direct computation. This form of solution is ap-
plicable to simple problems in which the problem description itself
specifies the computation needed to solve the problem.

Enumeration. A sequential search is an example of enumeration:
each entry in a list is checked to see if it is the one sought. Enumeration
is usually very slow, but sometimes it is the only method available.
Often it is possible to start with an enumeration method and improve
it by avoiding obviously impossible cases, as the following example
shows.

Example Al.1 Prime Numbers

Given a positive number N greater than 1, find the smallest integer
M > 1 that divides N exactly.

If the smallest divisor is N, then N must be prime. An enumerative
method for solving this problem is simply to test each integer less than
N, starting with 2, to see if it divides N. If one is found, it is the smallest.
To program this solution, we need to be able to test whether M divides
N. This is a basic operation in some computers and programming
languages, but not in others. However, it can be programmed in terms
of more elementary operations by testing whether N is equal to (N+M)*M
(see Chapter P2). Our first attempt at this program is shown in Program
Al.l. If N is prime, the loop is executed N — 2 times (for the values
M =23 ...,N— 1) Alittle thought reveals that if N is not prime,
one of its divisors must be less than or equal to the square root of N,
so there is no need to test any values above that. Program Al.la gives a
revised version. For the case N = 127, Program Al.l executes its loop
125 times, whereas Program Al.la executes its loop only 10 times. A
further improvement is possible by checking only for M = 2 and the odd
numbers between 3 and the square root of N.

Program Al.1 Find a divisor of N

SMALLEST__DIVISOR: program
integer M,N
M2
do while M*(N+M)#N
Me—M+1
enddo
output M
endprogram SMALLEST__DIVISOR

TYPES OF ALGORITHM

Program Al.la Improved divisor program

SMALLEST__DIVISOR: program
integer M,N
Me=2
do while M7T2=N and M*(N+M)##N
MM+ 1
enddo
if MT2>N then M<—N endif
output M
endprogram SMALLEST__DIVISOR

Enumeration methods are the basis of many programs for non-
numerical problems, but because they can be so slow, it is essential to
conduct a careful analysis to look for improvements.

Divide and conquer. Breakinga problem into simpler subproblems
is a very powerful technique, useful for both numerical and nonnumeri-
cal problems. We will illustrate it with a search in an ordered list, such
as a telephone book. One way of doing such a search is to open the book
in the middle and see whether the item sought is before or after the
middle entry. This can be done by a single comparison with the middle
entry, because it is known that all items before that entry are alpha-
betically less and all items after it are alphabetically greater. Thus in
one step we have reduced the size of the list to be searched by half. The
same technique can now be applied to the smaller list. Thus, if the
original list had 16 items in it, the first comparison leaves us with a list
of 8 items to consider, the second with a list of 4, the third with a list
of 2, and the last with a list of 1. A list of one item can be searched very
quickly indeed! This particular search method, called a binary search,
is a very important technique and is the basis for many related algo-
rithms. We will be discussing it in more detail in Chapter A3.

Iteration. Iteration techniques are usually applicable to numerical
problems. An example is the computation of a function such as sin(X).
It can be shown that the value of sin(X) is given by the expression

sin(X) = X — X3/8! + X5/5! — XV/70 + . . .

(where 5! means 5 X 4 X 3 X 2 X 1, or factorial 5). This does not lead
to a direct algorithm, because it requires an infinite number of opera-
tions. However, for any desired degree of precision, it is sufficient to use
only the first part of the infinite sequence. In particular, if we are con-

A5

A6

TYPES OF ALGORITHM

tent with a precision of +1075 for all values of X between —1.0 and
+1.0, it can be shown that we can use

sin(X) = X — X3/3! + X3/5! — X7/7!

This computation requires only a finite number of operations, and can
now be coded directly. If more precision is needed, additional terms can
be added. For example, the next term (X°/9!) should be added if an
accuracy of 10-7 is required for the same values of X. It can be shown for
this example that the desired precision can be achieved by including all
terms until a term is generated that is smaller than the error allowed, so
a program can be written to iterate until the desired accuracy is ob-
tained, as shown in Program Al.2.

Program Al.2 Compute sine by iteration

SINE: program
The sine of a number X is computed using a power series. Terms
are added until the next term is less than ERROR.
real SINE,X,ERROR,NEXT_TERM.I
SINE<X
l<—4.0
NEXT_TERM« —X13/6.0
do while ABS(NEXT_TERM)=ERROR
SINE<«SINE+NEXT_TERM
NEXT__TERM<«— —NEXT_TERM*X12/ (1*(1+1.0))
le—1+2.0
enddo
output ‘SINE OF’ X,'IS’,SINE
endprogram SINE

Trial and error. In the trial-and-error form of iteration, the amount
by which the current approximation fails to satisfy the problem is used
to determine the next approximation. The square-root example in
Chapter G3 is of this type. The current approximation X to the square
root of 2 is squared and compared to 2. If it is less, the answer is tenta-
tively increased by a small amount to try and get closer.

A trial-and-error process can be likened to the way people perform
many everyday actions—driving a car, putting an object down, or almost
any action involving movement. A person steers a car in the desired
direction by turning the wheel approximately the correct amount and
observing whether more or less turn is needed; that is, she observes the

TYPES OF ALGORITHM

error in a trial attempt and then corrects to reduce the error. No matter
how well the driver knew the route, a car could not be driven blind-
folded, even if there were no other cars on the road, because the measure-
ment of the error is essential to the correction. Chapter A2 gives a

trial-and-error method for solving numerical problems common to many
scientific and business applications.

A7

Chapter

A2

The Method of
Bisection

Suppose you have decided to buy a car costing $3000, and the dealer
says you can have it if you will put $500 down and pay $115 a month
for 24 months. You will naturally ask yourself whether you can't find
less expensive financing somewhere else. One approach is to call a
number of banks and find out what interest rate they will charge on a
loan for the balance of $2500, to be paid monthly over 24 months.
Question: What is the equivalent interest rate of the financing offered
by the dealer? (Legally the dealer must tell you, but since the finance
charges probably also include a number of other items, such as insurance
against the buyer defaulting, the declared interest rate may not be the
same as the effective interest rate.) If you could calculate the effective
interest rate, you could make a quick decision whether to choose
alternate financing from a bank.

If the original cost is COST ($2500 in our example, because the
amount to be borrowed is the balance after the down payment), the
repayment rate is R per month ($115 in our example), and the interest
rate is P percent per year, then the amount left to be repaid after N
months is

[+ B
P \N 1200> B
COSTX(1+IZOO> R G

1200

We would like to know what value of P makes this value zero when
COST = 2500, R = 115, and N = 24; that is, we want to solve the
equation

A8

THE METHOD OF BISECTION

1 P_* 1

I _

P \2¢ (1200> o
2500 X (l-*-mé) 115 X P =0

1200

for P.

The method of bisection is a technique for solving problems of this
type. It is, in fact, one of the simplest and most reliable methods for
finding the solution to an equation, though not one of the fastest. The
solution of equations arises in almost all applications of computers. For
example, an engineer who wants to find values of variables to achieve
certain objectives—such as selecting the thrust of a rocket to place a
spacecraft in the correct orbit—must usually solve an equation.

We can write the equation to be solved for X as

F(X) =0

(In the financing problem, X is replaced by P, the interest rate.) Let us
suppose that we can determine easily that the function F(X) changes
sign as X changes from one value to another. For example, a quick calcu-
lation of the remaining balance after 24 months in the example above
reveals that the balance is negative if the interest rate is 1% and positive
if the interest rate is 50%. Therefore, we know that an interest rate
somewhere between 1% and 50% will make the balance exactly zero.

In the method of bisection, we start with a function F(X) and two
values of X for which the values of F(X) have opposite signs. This tells
us that there is a value of X, between the two values given, for which
F(X) is zero. (Mathematically, we are assuming that F(X) is continuous,
as it is for most reasonable problems.) Suppose, for example, that the
function F(X) is given by X3 + 3X — 5. Figure A2.1 shows the graph of
this function. As can be seen, the function is below the X-axis at X = 0
and above it at X = 2. Since the function is continuous, it must cross the

an +3X -5

Figure A2.1 X2+ 3X —5

A10 THE METHOD OF BISECTION

Function positive

\
|
: I:EI
Function negative Solution HIGH

Figure A22 Relation of computed points to solution

X-axis somewhere between X = 0 and X = 2. Hence, for some value of
X between 0 and 2, X3 + 3X — 5 = 0.

If we set LOW to 0 and HIGH to 2, then there is a solution of the
problem between LOW and HIGH, as shown in Figure A2.2. The impor-
tant characteristic of the two points LOW and HIGH is that the value of
the function is negative at LOW and positive at HIGH. Now let us find
the point MID midway between LOW and HIGH, as shown in Figure A2.2.
If we look at the sign of the function at MID we have two cases:

Case 1.

The function is negative at MID (as shown). Since the function is posi-
tive at HIGH, a solution lies between MID and HIGH. Consequently, we
can move LOW over to the point MID to get Figure A2.3. (Note that the
solution still lies between LOW and HIGH.)

Case 2.

The function is positive at MID. In this case a solution lies between LOW
and MID. Consequently we can move HIGH over to the point MID, as
shown in Figure A2.4.

In either case, we finish up with the points LOW and HIGH such that
the function is still negative at LOW and positive at HIGH. Furthermore,
the distance between LOW and HIGH is now half what it was initially.

This process can be repeated by setting MID to the midpoint between
the new LOW and HIGH and repeating the analysis, as shown in Figure
A25.

It can be seen that the points LOW and HIGH are getting closer to each
other at each step. Since the solution of the original problem lies be-
tween LOW and HIGH after each step, we are getting a better and better
approximation to the position of the solution X.

In the computer, we can represent only a finite number of values
exactly. In general, the solution X will not be one of these values, so we

