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Editorial Policy

§ 1. Lecture Notes aim to report new developments - quickly, informally, and at a high
level. The texts should be reasonably self-contained and rounded off. Thus they may, and
often will, present not only results of the author but also related work by other people.
Furthermore, the manuscripts should provide sufficient motivation, examples and
applications. This clearly distinguishes Lecture Notes manuscripts from journal articles
which normally are very concise. Articles intended for a journal but too long to be
accepted by most journals, usually do not have this “lecture notes” character. For similar
reasons it is unusual for Ph. D. theses to be accepted for the Lecture Notes series.

§ 2. Manuscripts or plans for Lecture Notes volumes should be submitted (preferably in
duplicate) either to one of the series editors or to Springer- Verlag, Heidelberg . These
proposals are then refereed. A final decision concerning publication can only be made
on the basis of the complete manuscript, but a preliminary decision can often be based
on partial information: a fairly detailed outline describing the planned contents of each
chapter, and an indication of the estimated length, a bibliography, and one or two sample
chapters - or a first draft of the manuscript. The editors will try to make the preliminary
decision as definite as they can on the basis of the available information.

§ 3. Final manuscripts should preferably be in English. They should contain at least 100

pages of scientific text and should include

- a table of contents;

- an informative introduction, perhaps with some historical remarks: it should be
accessible to a reader not particularly familiar with the topic treated;

- a subject index: as a rule this is genuinely helpful for the reader.

Further remarks and relevant addresses at the back of this book.
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INTRODUCTION

Ce volume contient les cours donnés a I'Ecole d'Eté de Calcul des Probabilités
de Saint-Flour du 18 Aoit au 4 Septembre 1991.

Nous remercions les auteurs qui ont effectué un gros travail de rédaction
définitive qui fait de leurs cours un texte de référence.

L'Ecole a rassemblé soixante cinq participants dont 33 ont présenté, dans un
exposé, leur travail de recherche.

On trouvera ci-dessous la liste des participants et de ces exposés dont un
résumé pourra étre obtenu sur demande.

Afin de faciliter les recherches concernant les écoles antérieures, nous
redonnons ici le numéro du volume des "Lecture Notes" qui leur est consacré :

Lecture Notes in Mathematics
1971 : n° 307 - 1973 : n® 390 - 1974 : n° 480 - 1975 : n° 539 -
1976 : n° 598 - 1977 : n° 678 - 1978 : n° 774 - 1979 : n° 876 -
1980 : n° 929 - 1981 : n® 976 - 1982 : n° 1097 - 1983 : n° 1117 -
1984 : n° 1180 - 1985 - 1986 et 1987 : n° 1362 - 1988 : n° 1427 -
1989 : n° 1464 - 1990 : n° 1527

Lecture Notes in Statistics
1986 : n° 50
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1. INTRODUCTION

The central theme of these lectures

valued Markov processes. This subject is

been stimulated from several different

population genetics models, interacting

differential equations. The objective of

to these different aspects of the subject

is the construction and study of measure-
in the midst of rapid development and has

directions including branching processes,

particle systems and stochastic partial

these notes is to provide an introduction

with some emphasis on their interrelations

and also to outline some aspects currently under development. Chapters 1-9 provide

an introduction to some of the main ideas and tools in the theory of measure-valued

processes. Chapters 10-12 cover topics currently under active development and are
primarily intended as an introduction to the growing literature devoted to these
aspects of measure-valued processes. Throughout the emphasis is given to outlining
the main lines of development rather than attempting a systematic detailed
exposition. In Section 1.5 we describe in more detail the structure of these notes
(including interrelations between the chapters) as well as mention the principal
methods. In the remaining sections of this introduction we outline the roots of the

theory of measure-valued Markov processes and the major topics to be discussed in
these notes.

By a measure-valued Markov process we will always mean a Markov process whose
state space is M(E), the space of Radon measures on (E,E), where E is a Polish
space and & = B(E) is the c-algebra of Borel subsets of E.

1.1. Particle Systems and their Empirical Measures

Consider a system of N E-valued processes {Zi(t):i=l,...,N, t=0}. The associa-

ted (normalized) empirical measure process is defined by

(1.1.1) X(t) =

Bz (t)"
1

We will show in the next chapter that empirical measure processes of type

(1.1.1) in which the (Zi) form an exchangeable Markov system are in fact measure-

valued Markov processes. Exchangeable particle systems arise naturally in many

fields including statistical physics, population biology and genetic algorithms.

In Section 2.10 and Chapter 4 we will proceed to study a related class of

measure-valued processes on |]R’d which arise from spatially distributed population

models in which the number of particles, N(t), at time t, is no longer conserved



but in which particles undergo birth and death. In this case we consider atomic
measures of the form

N(t)
(LL2) X1 = mN©) § szim,

i=1

where m(N(0)) is the mass of each particle.

1.2. Limits of Particle Systems and Stochastic Partial Differential Eguations

Non-atomic measure-valued processes arise naturally in the limit, N > o, of
systems of the form (l.1.1) or in the corresponding high density limit of (1.1.2).
In many such cases a law of large numbers phenomenon (propagation of chaos) occurs
and the limiting process is deterministic. For example this occurs in the usual
mean-field or McKean-Vlasov limit (cf. Girtner (1986), Léonard (1986), Sznitman
(1989)). The high density limit N(O) — o, m(N(0)):N(O) — m, of systems of the
form (1.1.2) can also give rise to (deterministic) linear or nonlinear partial
differential equations including reaction diffusion equations, hydrodynamic equa-
tions, etc. (cf. e.g. Oelschliger (1989), De Masi and Presutti (1991), Sznitman
(1989)).

The main emphasis in these lectures will be to study such limits when the
limiting process is itself random. However we do not consider the frequently studied
case of fluctuations around a law of large numbers limit in which normalized and
centered sequences are studied (cf. Holley and Stroock (1979)), but rather study
the non-centered and therefore non-negative limits. For example in the context of
symmetrically interacting diffusions random McKean-Vlasov limits can arise (cf.
Sect. 5.8.1). In the next chapter we will consider sequences of finite exchangeable
systems which arise in the study of population genetics and genetic algorithms which
converge to a random measure-valued limit.

It should be emphasized that in many applications it is the finite particle
systems themselves which are of primary interest. However qualitative properties of
the limiting process can often provide insight into the collective behavior of the
former. In addition these limiting processes possess rich mathematical structures
which are of interest in their own right.

If we begin with the empirical measure of a system of particles in [Rd one
possibility is that the limiting measure-valued process has the form X(t,dx) =
)’Z(t,x)dx, where  X(t,x) denotes the density process and that X(t,.) belongs to an
appropriate linear space, V, of non-negative measurable functions. It would also be

reasonable to expect that )~((t,x) is described as the solution of a stochastic



partial dif ferential equation. There are a number of different ways to formulate a
stochastic partial differential equation (see e.g. Walsh, (1986)). For example the
integral form of such an equation is given in terms of an .‘I"(!Rd)—valued Wiener pro-
cess {W(t):t=0} with covariance operator QO as follows: for each ¢e V*, a linear
space of test functions in duality with V, with canonical bilinear form <.,.> on
VoV¥,

t t
(1L.2.1)  <X(t),$>-<X(0),¢> = f <Als,X(s)),¢>ds + J’ <B(s,X(s))W(ds),$>
0 0

where for each s A(s,.):V — V, and for each veV B(s,v) is a linear operator such

t
that the Ité6 integral I<B(s,X(s))W(ds),¢> is well-defined yielding a martingale
(0]

t
with increasing process JQ(S,X(S))(¢,¢)C‘S where  Q(s,v) := B(s,v)Qo(s,v)B*(s,v).
0

Under certain natural conditions on A(s,.), B(s,.) and Q(s,.) the solution to equa-
tion (1.2.1) is non-negative and hence measure-valued. An important class of stoc-
hastic partial differential equations of this form were first developed by Pardoux
(1975) and generalized by Krylov and Rozovskii (1981). Equations of this type do
occur in some cases including the study of stochastic flows in [Rd (cf. Kunita
(1986), Rozovskii (1990)), turbulent flows (cf. Chow (1978)) and random McKean-
Vlasov limits. However it turns out that we must also consider more general measure-
valued diffusions, that is, singular measure-valued as well as density-valued

processes.

1.3 Some Basic Classes of Measure-valued Processes

To introduce these notions let us consider at a purely formal level the mea-
sure-valued analogue, (Xt:tZO), of a finite dimensional diffusion process associated
with a second order elliptic operator. For functions, F, in an appropriate domain
D(G) < bC(M(E)) (the bounded continuous functions on M(E)), a second order infinite

dimensional differential operator would have the form

(1.3.1)  GF() = J Alt, 1, dx) (SF (1)/81(x))
E

+ 1/2.[ J. (BZF(u)/Su(x)Bu(y)) Q(t,p;dx,dy)
E'E

SF(u)
Su(x)

where := lim (F(u+56x)-F(u))/c, A(t,.) generates a deterministic evolution

€|0

on M(E), and Q(t,u;dx,dy) is a symmetric signed measure on ExE such that



