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Preface

This book is a modification of “Scientific Computing and Differential
Equations: An Introduction to Numerical Methods.” The intent of the present
book is to introduce the basic ideas of vector and parallel computing as part
of the introduction of basic numerical methods. We believe this will be useful
for computer science students as well as those in science and engineering. It
is clear that supercomputing will make an increasing impact on scientific and
engineering endeavors in the years to come and supercomputing is necessarily
based on vector and parallel computers. It would be useful for students to have
access to such machines during this course, although that is not necessary.
Much of the material on parallel and vector computing can still be studied
profitably.

The book is meant to be used at the advanced undergraduate or beginning
graduate level and it is assumed that such students will have a background in
calculus, including some differential equations, and also some linear algebra.
Linear algebra is the most important mathematical tool in scientific comput-
ing, both for the formulation of problems as well as for analysis of numerical
methods for their solution. Even most students who have had a full under-
graduate course in linear algebra will not have been exposed to some of the
necessary material, such as norms and some aspects of eigenvalues, eigenvec-
tors and canonical forms. Chapter 2 contains a review of such material. It is
suggested that it be used primarily as a reference as the corresponding material
arises later in the book.

Chapter 1 is an overview of scientific computing, especially the topics of
mathematical modeling, the general process of numerical solution of problems,
and the computational environment in which these solutions are obtained.
Chapter 3 gives an introduction to some of the basic ideas in parallel and
vector computing including a review of the architecture of such computers
as well as some fundamental concepts. Some of these ideas and techniques
are then illustrated by the simple but important problem of matrix-vector
multiplication, a topic that arises repeatedly in the remainder of the book.
Chapter 4 treats some elementary topics that are covered in any first course
on numerical methods: Taylor series approximation, interpolation and splines,

ix
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least squares approximation, and finding solutions of nonlinear equations.

A large fraction of the book is devoted to the solution of linear systems of
equations, since linear systems are at the center of many problems in scientific
computing. Chapter 5 shows how linear systems arise by discretizing differen-
tial equations. An important aspect of these systems is the non-zero structure
of the coefficient matrix. Thus, we may obtain tridiagonal matrices, banded
matrices or very large sparse matrices, depending on the type of differential
equation and the method of discretization.

Chapter 6 begins the solution of linear systems, concentrating on those
systems for which direct methods such as Gaussian elimination are appropriate.
There are discussions of rounding error and the effect of ill-conditioning as well
as an introduction to other direct methods such as QR factorization. Chapter
7 shows how the basic direct methods must be reorganized to be efficient on
parallel and vector computers.

For the very large sparse linear systems that arise from partial differential
equations, direct methods are not always appropriate and Chapter 8 begins
the study of iterative methods. The classical Jacobi, Gauss-Seidel and SOR
methods, and their parallel and vector implementations, are treated leading
up to their use in the multigrid method. Then, in Chapter 9, we consider
conjugate gradient methods, for both symmetric and nonsymmetric systems.
Included in this chapter are discussions of preconditioning, which utilizes some
of the methods of Chapter 8, and parallel and vector implementations. This
chapter ends with a nonlinear partial differential equation.

Many important topics have not been included; for example, computation
of eigenvalues and eigenvectors and solution of linear or nonlinear programming
problems. However, such areas also rely heavily on techniques for the solution
of linear equations.

We believe that this book can be used successfully at different levels. For
an introductory one semester course at the undergraduate level, concentration
would be on Chapters 3, 4, 6 and parts of 5 and 7. For a first course at the
graduate level for those who have had an undergraduate numerical methods
course, much of Chapters 4, 5, and 6 can be covered rapidly in review and
emphasis placed on the more advanced topics of Chapters 7, 8, and 9. Or,
with some supplementary material from the instructor, the book could form
the basis for a full year course.

We owe thanks to many colleagues and students for their comments on our
previous book and on the draft of the current one. We are also indebted to
Ms. Brenda Lynch for her expert LaTeXing of the manuscript.

Stanford, California
Charlottesville, Virginia
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Chapter 1

The World of Scientific
Computing

1.1 What Is Scientific Computing?

The many thousands of computers now installed in this country and abroad
are used for a bewildering — and increasing — variety of tasks: accounting and
inventory control for industry and government, airline and other reservation
systems, limited translation of natural languages such as Russian to English,
monitoring of process control, and on and on. One of the earliest — and still
one of the largest — uses of computers was to solve problems in science and
engineering and, more specifically, to obtain solutions of mathematical models
that represent some physical situation. The techniques used to obtain such
solutions are part of the general area called scientific computing, and the use
of these techniques to elicit insight into scientific or engineering problems is
called computational science (or computational engineering).

There is now hardly an area of science or engineering that does not use
computers for modeling. Trajectories for earth satellites and for planetary
missions are routinely computed. Engineers use computers to simulate the
flow of air about an aircraft or other aerospace vehicle as it passes through
the atmosphere, and to verify the structural integrity of aircraft. Such studies
are of crucial importance to the aerospace industry in the design of safe and
economical aircraft and spacecraft. Modeling new designs on a computer can
save many millions of dollars compared to building a series of prototypes.
Similar considerations apply to the design of automobiles and many other
products, including new computers.

Civil engineers study the structural characteristics of large buildings, dams,
and highways. Meteorologists use large amounts of computer time to predict
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tomorrow’s weather as well as to make much longer range predictions, includ-
ing the possible change of the earth’s climate. Astronomers and astrophysicists
have modeled the evolution of stars, and much of our basic knowledge about
such phenomena as red giants and pulsating stars has come from such calcu-
lations coupled with observations. Ecologists and biologists are increasingly
using the computer in such diverse areas as population dynamics (including
the study of natural predator and prey relationships), the flow of blood in the
human body, and the dispersion of pollutants in the oceans and atmosphere.

The mathematical models of all of these problems are systems of differential
equations, either ordinary or partial. Differential equations come in all “sizes
and shapes,” and even with the largest computers we are nowhere near being
able to solve many of the problems posed by scientists and engineers. But there
is more to scientific computing, and the scope of the field is changing rapidly.
There are many other mathematical models, each with its own challenges.
In operations research and economics, large linear or nonlinear optimization
problems need to be solved. Data reduction — the condensation of a large
number of measurements into usable statistics — has always been an important,
if somewhat mundane, part of scientific computing. But now we have tools
(such as earth satellites) that have increased our ability to make measurements
faster than our ability to assimilate them; fresh insights are needed into ways
to preserve and use this irreplaceable information. In more developed areas
of engineering, what formerly were difficult problems to solve even once on
a computer are today’s routine problems that are being solved over and over
with changes in design parameters. This has given rise to an increasing number
of computer-aided design systems. Similar considerations apply in a variety of
other areas.

Although this discussion begins to delimit the area that we call scientific
computing, it is difficult to define it exactly, especially the boundaries and over-
laps with other areas. We will accept as our working definition that scientific
computing is the collection of tools, techniques, and theories required to solve
on a computer mathematical models of problems in science and engineering.

A majority of these tools, techniques, and theories originally developed in
mathematics, many of them having their genesis long before the advent of elec-
tronic computers. This set of mathematical theories and techniques is called
numerical analysis (or numerical mathematics) and constitutes a major part
of scientific computing. The development of the electronic computer, however,
signaled a new era in the approach to the solution of scientific problems. Many
of the numerical methods that had been developed for the purpose of hand cal-
culation (including the use of desk calculators for the actual arithmetic) had
to be revised and sometimes abandoned. Considerations that were irrelevant
or unimportant for hand calculation now became of utmost importance for the
efficient and correct use of a large computer system. Many of these consid-
erations — programming languages, operating systems, management of large
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quantities of data, correctness of programs — were subsumed under the disci-
pline of computer science, on which scientific computing now depends heavily.
But mathematics itself continues to play a major role in scientific computing:
it provides the language of the mathematical models that are to be solved and
information about the suitability of a model (Does it have a solution? Is the
solution unique?), and it provides the theoretical foundation for the numerical
I methods and, increasingly, many of the tools from computer science.

In summary, then, scientific computing draws on mathematics and com-
puter science to develop the best ways to use computer systems to solve prob-
lems from science and engineering. This relationship is depicted schematically
in Figure 1.1.1. In the remainder of this chapter, we will go a little deeper into
these various areas.

f Numerical Analysis

Mathematics

s

Problem from —— Scientific Computing — Computer — Solution
Science or System
Engineering

Computer Science

Figure 1.1.1: Scientific Computing and Related Areas

1.2 Mathematical Modeling

As was discussed in Section 1.1, we view scientific computing as the discipline
that achieves a computer solution of mathematical models of problems from
science and engineering. Hence, the first step in the overall solution process is
the formulation of a suitable mathematical model of the problem at hand.

Modeling

1 The formulation of a mathematical model begins with a statement of the
factors to be considered. In many physical problems, these factors concern
the balance of forces and other conservation laws of physics. For example, in
the formulation of a model of a trajectory problem the basic physical law is
Newton’s second law of motion, which requires that the forces acting on a body
equal the rate of change of momentum of the body. This general law must then
be specialized to the particular problem by enumerating and quantifying the




4 Chapter 1 The World of Scientific Computing

forces that will be of importance. For example, the gravitational attraction of
Jupiter will exert a force on a rocket in Earth’s atmosphere, but its effect will
be so minute compared to the earth’s gravitational force that it can usually
be neglected. Other forces may also be small compared to the dominant ones
but their effects not so easily dismissed, and the construction of the model will
invariably be a compromise between retaining all factors that could likely have
a bearing on the validity of the model and keeping the mathematical model
sufficiently simple that it is solvable using the tools at hand. Classically, only
very simple models of most phenomena were considered since the solutions
had to be achieved by hand, either analytically or numerically. As the power
of computers and numerical methods has developed, increasingly complicated
models have become tractable.

In addition to the basic relations of the model — which in most situations in
scientific computing take the form of differential equations — there usually will
be a number of initial or boundary conditions. For example, in the predator-
prey problem to be discussed in Chapter 5, the initial population of the two
species being studied is specified. In studying the flow in a blood vessel, we
may require a boundary condition that the flow cannot penetrate the walls
of the vessel. In other cases, boundary conditions may not be so physically
evident but are still required so that the mathematical problem has a unique
solution. Or the mathematical model as first formulated may indeed have
many solutions, the one of interest to be selected by some constraint such
as a requirement that the solution be positive, or that it be the solution with
minimum energy. In any case, it is usually assumed that the final mathematical
model with all appropriate initial, boundary, and side conditions indeed has
a unique solution. The next step, then, is to find this solution. For problems
of current interest, such solutions rarely can be obtained in “closed form.”
The solution must be approximated by some method, and the methods to
be considered in this book are numerical methods suitable for a computer.
In the next section we will consider the general steps to be taken to achieve a
numerical solution, and the remainder of the book will be devoted to a detailed
discussion of these steps for a number of different problems.

Validation

Once we are able to compute solutions of the model, the next step usually
is called the validation of the model. By this we mean a verification that the
solution we compute is sufficiently accurate to serve the purposes for which the
model was constructed. There are two main sources of possible error. First,
there invariably are errors in the numerical solution. The general nature of
these errors will be discussed in the next section, and one of the major themes
in the remainder of the book will be a better understanding of the source and
control of these numerical errors. But there is also invariably an error in the
model itself. As mentioned previously, this is a necessary aspect of modeling:
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the modeler has attempted to take into account all the factors in the physical
problem but then, in order to keep the model tractable, has neglected or ap-
proximated those factors that would seem to have a small effect on the solution.
The question is whether neglecting these effects was justified. The first test
of the validity of the model is whether the solution satisfies obvious physical
and mathematical constraints. For example, if the problem is to compute a
rocket trajectory where the expected maximum height is 100 kilometers and
the computed solution shows heights of 200 kilometers, obviously some blunder
has been committed. Or, it may be that we are solving a problem for which
we know, mathematically, that the solution must be increasing but the com-
puted solution is not increasing. Once such gross errors are eliminated — which
is usually fairly easy — the next phase begins, which is, whenever possible,
comparison of the computed results with whatever experimental or observa-
tional data are available. Many times this is a subtle undertaking, since even
though the experimental results may have been obtained in a controlled set-
ting, the physics of the experiment may differ from the mathematical model.
For example, the mathematical model of airflow over an aircraft wing may
assume the idealization of an aircraft flying in an infinite atmosphere, whereas
the corresponding experimental results will be obtained from a wind tunnel
where there will be effects from the walls of the enclosure. (Note that neither
the experiment, nor the mathematical model represents the true situation of
an aircraft flying in our finite atmosphere.) The experience and intuition of
the investigator are required to make a human judgement as to whether the
results from the mathematical model are corresponding sufficiently well with
observational data.

At the outset of an investigation this is quite often not the case, and the
model must be modified. This may mean that additional terms — which were
thought negligible but may not be — are added to the model. Sometimes a
complete revision of the model is required and the physical situation must be
approached from an entirely different point of view. In any case, once the model
is modified the cycle begins again: a new numerical solution, revalidation,
additional modifications, and so on. This process is depicted schematically in
Figure 1.2.1.

Once the model is deemed adequate from the validation and modification
process, it is ready to be used for prediction. This, of course, was the whole
purpose. We should now be able to answer the questions that gave rise to
the modeling effort: How high will the rocket go? Will the wolves eat all the
rabbits? Of course, we must always take the answers with a healthy skepticism.
Our physical world is simply too complicated and our knowledge of it too
meager for us to be able to predict the future perfectly. Nevertheless, we hope
that our computer solutions will give increased insight into the problem being
studied, be it a physical phenomenon or an engineering design.
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Figure 1.2.1: The Mathematical Modeling and Solution Process

1.3 The Process of Numerical Solution

We will discuss in this section the general considerations that arise in the
computer solution of a mathematical model, and in the remainder of the book
these matters will be discussed in more detail.

Once the mathematical model is given, our first thought typically is to try
to obtain an explicit closed-form solution, but such a solution will usually only
be possible for certain (perhaps drastic) simplifications of the problem. These
simplified problems with known solutions may be of great utility in providing
“check cases” for the more general problem.

After realizing that explicit solutions are not possible, we then turn to
the task of developing a numerical method for the solution. Implicit in our
thinking at the outset — and increasingly explicit as the development proceeds
— will be the computing equipment as well as the software environment that
is at our disposal. Our approach may be quite different for a microcomputer
than for a very large computer. But certain general factors must be considered
regardless of the computer to be used.

Rounding Errors

Perhaps the most important factor is that computers deal with a finite
number of digits or characters. Because of this we cannot, in general, do arith-
metic within the real number system as we do in pure mathematics. That
is, the arithmetic done by a computer is restricted to finitely many digits,
whereas the numerical representation of most real numbers requires infinitely
many. For example, such fundamental constants as 7 and e require an infinite
number of digits for a numerical representation and can never be entered ex-
actly in a computer. Moreover, even if we could start with numbers that have
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an exact numerical representation in the computer, the processes of arithmetic
require that eventually we make certain errors. For example, the quotient of
two numbers may require infinitely many digits for its numerical representa-
tion. Therefore, we resign ourselves at the outset to the fact that we cannot do
arithmetic exactly on a computer. We shall make small errors, called round-
ing errors, on almost all arithmetic operations, and our task is to insure that
these small errors do not accumulate to such an extent as to invalidate the
computation.

Computers use the binary number system, and each machine allows a num-
ber of binary digits that can be carried in the usual arithmetic, called single-
precision arithmetic, of the machine. On most scientific computers, this is the
equivalent of between 7 and 14 decimal digits. Higher-precision arithmetic can
also be carried out. On many machines double-precision arithmetic, which es-
sentially doubles the number of digits that are carried, is part of the hardware;
in this case, programs with double-precision arithmetic usually require only
modest, if any, increases in execution time compared to single-precision. On
the other hand, some machines implement double precision by software, which
may require several times as much time as single precision. Precision higher
than double is essentially always carried out by means of software and becomes
increasingly inefficient as the precision increases. Higher-precision arithmetic is
rarely used on practical problems, but it may be useful for generating “exact”
solutions or other information for testing purposes.

Round-off errors can affect the final computed result in different ways.
First, during a sequence of millions of operations, each subject to a small error,
there is the danger that these small errors will accumulate so as to eliminate
much of the accuracy of the computed result. If we round to the nearest digit,
the individual errors will tend to cancel out, but the standard deviation of the
accumulated error will tend to increase with the number of operations, leaving
the possibility of a large final error. If chopping — that is, dropping the trailing
digits rather than rounding — is used, there is a bias to errors in one direction,
and the possibility of a large final error is increased.

In addition to the possible accumulation of errors over a large number of
operations, there is the danger of catastrophic cancellation. Suppose that two
numbers a and b are equal to within their last digit. Then the difference
¢ = a— b will have only one significant digit of accuracy even though no round-
off error will be made in the subtraction. Future calculations with ¢ may then
limit the final result to one correct digit. Whenever possible, one tries to elimi-
nate the possibility of catastrophic cancellation by rearranging the operations.
Catastrophic cancellation is one way in which an algorithm can be numerically
unstable, although in exact arithmetic it may be a correct algorithm. Indeed, it
is possible for the results of a computation to be completely erroneous because
of round-off error even though only a small number of arithmetic operations
have been performed. Examples of this will be given later.
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Detailed round-off error analyses have now been completed for a number of
the simpler and more basic algorithms such as those that occur in the solution
of linear systems of equations; some of these results will be described in more
detail in Chapter 6. A particular type of analysis that has proved to be very
powerful is backward error analysis. In this approach the round-off errors
are shown to have the same effect as that caused by changes in the original
problem data. When this analysis is possible, it can be stated that the error
in the solution caused by round off is no worse than that caused by certain
errors in the original model. The question of errors in the solution is then
equivalent to the study of the sensitivity of the solution to perturbations in
the model. If the solution is highly sensitive, the problem is said to be ill-posed
or ill-conditioned, and numerical solutions are apt to be meaningless.

Discretization Error

Another way that the finiteness of computers manifests itself in causing
errors in numerical computation is due to the need to replace “continuous”
problems by “discrete” ones. Chapter 5 is devoted to showing how continuous
problems such as differential equations are approximated by discrete problems.
As a simple example, discussed further in Section 5.1, the integral of a contin-
uous function requires knowledge of the integrand along the whole interval of
integration, whereas a computer approximation to the integral can use values
of the integrand at only finitely many points. Hence, even if the subsequent
arithmetic were done exactly with no rounding errors, there would still be the
error due to the discrete approximation to the integral. This type of error is
usually called discretization error or truncation error, and it affects, except in
trivial cases, all numerical solutions of differential equations and other “con-
tinuous” problems.

There is one more type of error, which is somewhat akin to discretization
error. Many numerical methods are based on the idea of an iterative process.
In such a process, a sequence of approximations to a solution is generated with
the hope that the approximations will converge to the solution; in many cases
mathematical proofs can be given that show convergence as the number of
iterations tends to infinity. However, only finitely many such approximations
can ever be generated on a computer, and, therefore, we must necessarily stop
short of mathematical convergence. The error caused by such finite termination
of an iterative process is sometimes called convergence error, although there is
no generally accepted terminology here.

If we rule out trivial problems that are of no interest in scientific comput-
ing, we can summarize the situation with respect to computational errors as
follows. Every calculation will be subject to rounding error. Whenever the
mathematical model of the problem is a differential equation or other “con-
tinuous” problem, there also will be discretization error. And if an iterative
method is used for the solution, there will be convergence error. These types of
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errors and methods of analyzing and controlling them will be discussed more
fully in concrete situations throughout the remainder of the book. But it is
important to keep in mind that an acceptable error is very much dependent on
the particular problem. Rarely is very high accuracy — say, 14 digits — needed
in the final solution; indeed, for many problems arising in industry or other
applications two or three digit accuracy is quite acceptable.

Efficiency

The other major consideration besides accuracy in the development of com-
puter methods for the solution of mathematical models is efficiency. For most
problems, such as solving a system of linear algebraic equations, there are many
possible methods, some going back tens or even hundreds of years. Clearly, we
would like to choose a method that minimizes the computing time yet retains
suitable accuracy in the approximate solution. This turns out to be a difficult
problem which involves a number of considerations. Although it is frequently
possible to estimate the computing time of an algorithm by counting the re-
quired arithmetic operations, the amount of computation necessary to solve a
problem to a given tolerance is still an open question except in a few cases.
Even if one ignores the effects of round-off error, surprisingly little is known.
In the past several years these questions have spawned the subject of com-
putational complexity. However, even if such theoretical results were known,
they would still give only approximations to the actual computing time, which
depends on a number of factors involving the computer system. And these fac-
tors change as the result of new systems and architectures. Indeed, the design
and analysis of numerical algorithms should provide incentives and directions
for such changes.

We give a simple example of the way a very inefficient method can arise.
Many elementary textbooks on matrix theory or linear algebra present Cramer’s
rule for solving systems of linear equations. This rule involves quotients of cer-
tain determinants, and the definition of a determinant is usually given as the
sum of all possible products (some with minus signs) of elements of the matrix,
one element from each row and each column. There are n! such products for
an n x n matrix. Now, if we proceed to carry out the computation of a deter-
minant based on a straightforward implementation of this definition, it would
require about n! multiplications and additions. For n very small, say n = 2
or n = 3, this is a small amount of work. Suppose, however, that we have a
20 x 20 matrix, a very small size in current scientific computing. If we assume
that each arithmetic operation requires 1 microsecond (1076 second), then the
time required for this calculation — even ignoring all overhead operations in
the computer program — will exceed one million years! On the other hand,
the Gaussian elimination method, which will be discussed in Chapter 6, will
do the arithmetic operations for the solution of a 20 x 20 linear system in less
than 0.005 second, again assuming 1 microsecond per operation. Although




