Fourth Edition

STRUCTURED COMPUTER
ORGANIZATION

HIGH-LEVEL LANGUA
W . LOW-LEVEL
Fourscore

and seven ..." L LANGUAGE

PENTIUMII

I AV A
JAVAMACHINE <2




STRUCTURED
COMPUTER ORGANIZATION

FOURTH EDITION

ANDREW S. TANENBAUM

Vrije Universiteit
Amsterdam, The Netherlands

With contributions from
JAMES R. GOODMAN

University of Wisconsin
Madison, WI

PRENTICE HALL

UPPER SADDLE RIVER, NEW JERSEY 07458



Library of Congress Cataloging-in-Publication Dala

Tanenbaum, Andrew S.
Structured computer organization /
Andrew S. Tanenbaum. — 4th ed.
p. cm.
Includes bibliographical references and index.
ISBN: 0-13-095990-1
1. Computer programming. 2. Computer organization. I. Title.
QA76.6.T38 1999
004.2'2—dc21 98-42130
Ccip

Publisher: ALAN APT

Development editor: SONDRA CHAVEZ

Editor-in-chief: MARCIA HORTON

Production editor: IRWIN ZUCKER

Managing editor: EILEEN CLARK

Manufacturing buyer: PAT BROWN

Copy editor: MARTHA WILLIAMS

Director of production and manufacturing: DAVID W, RICCARDI
Composition and interior design: ANDREW S, TANENBAUM
Cover concept: ANDREW S. TANENBAUM

Cover director: ANN FRANCE

Cover illustrator: DON MARTINETTI, DM GRAPHICS, INC.
Editorial assistant: TONI HOLM

© 1999, 1990, 1984, 1976 by Prentice Hall, Inc.
Upper Saddle River, NJ 07458

All rights reserved. No part of this book may be reproduced, in any form or by any means, without permission in
writing from the publisher.

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the
development, research, and testing of the theories and programs to determine their effectiveness. The author and
publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation
contained in this book. The author and publisher shall not be liable in any event for incidental or consequential
damages in connection with, or arising out of, the furnishing, performance, or use of these programs.

TRADEMARK INFORMATION: Windows NT is a registered trademark of Microsoft Corporation. UltraSPARC
and Java are trademarks of Sun Microsystems, Inc.. Pentium II is a registered trademark of Intel Corporation. UNIX
is a registered trademark of The Open Group. PostScript is a registered trademark of Adobe Systems Inc.

Printed in the United States of America

109 8765432

ISBN 0-13-095990-1

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Svdney
Prentice-Hall of Canada, Inc., Toronto

Prentice-Hall Hispanoamericana, S. A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Pearson Education Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro



To Suzanne, Barbara, Marvin, Bram, and the memory of Sweetie T



PREFACE

The first three editions of this book were based on the idea that a computer
can be regarded as a hierarchy of levels, each one performing some well-defined
function. This fundamental concept is as valid today as it was when the first edi-
tion came out, so it has been retained as the basis for the fourth edition. As in the
first three editions, the digital logic level, the microarchitecture level, the instruc-
tion set architecture level, the operating system machine level, and the assembly
language level are all discussed in detail (although we have changed some of the
names to reflect modern practice).

Although the basic structure has been maintained, this fourth edition contains
many changes, both small and large, that bring it up to date in the rapidly chang-
ing computer industry. For example, all the code examples, which were in Pascal,
have been rewritten in Java, reflecting the popularity of Java in the computer
world. Also, the example machines used have been brought up to date. The
current examples are the Intel Pentium II, the Sun UltraSPARC II, and the Sun
picoJava II, an embedded low-cost hardware Java chip.

Multiprocessors and parallel computers have also come in widespread use
since the third edition, so the material on parallel architectures has been com-
pletely redone and greatly expanded, now covering a wide range of topics, from
multiprocessors to COWs.

The book has become longer over the years (although still not as long as some
other popular books on the subject). Such an expansion is inevitable as a subject
develops and there is more known about it. As a result, when the book is used for
a course, it may not always be possible to finish the book in a single course (e.g.,

xvi



PREFACE Xvii

in a trimester system). A possible approach would be to do all of Chaps. 1, 2, and
3, the first part of Chap. 4 (up through and including Sec. 4.4), and Chap. 5 as a
bare minimum. The remaining time could be filled with the rest of Chap. 4, and
parts of Chaps. 6, 7, and 8, depending on the interest of the instructor.

A chapter-by-chapter rundown of the major changes since the third edition
follows. Chapter 1 still contains an historical overview of computer architecture,
pointing out how we got where we are now and what the milestones were along
the way. The enlarged spectrum of computers that exist is now discussed, and our
three major examples (Pentium I, UltraSPARC II, and picoJava II) are intro-
duced.

In Chapter 2, the material on input/output devices has been updated,
emphasizing the technology of modern devices, including RAID disks, CD-
Recordables, DVD, and color printers, among many others.

Chapter 3 (digital logic level) has undergone some revision and now treats
computer buses and modern I/O chips. The major change here is additional
material on buses, especially the PCI bus and the USB bus. The three new exam-
ples are described here at the chip level.

Chapter 4 (now called the microarchitecture level) has been completely
rewritten. The idea of using a detailed example of a microprogrammed machine
to illustrate the ideas of data path control has been retained, but the example
machine is now a subset of the Java Virtual Machine. The underlying microarchi-
tecture has been correspondingly changed. Several iterations of the design are
given, showing what trade-offs are possible in terms of cost and performance.
The last example, the Mic-4, uses a seven-stage pipeline and provides an easy
introduction to how important modern computers, such as the Pentium II, work.
A new section on improving performance has been added, focusing on the most
recent techniques such as caching, branch prediction, (superscalar) out-of-order
execution, speculative execution, and predication. The new example machines
are discussed at the microarchitecture level.

Chapter 5 (now called the instruction set architecture level) deals with what
many people refer to as “machine language.” The Pentium II, UltraSPARC II and
Java Virtual Machine are used as the primary examples here.

Chapter 6 (operating system machine level) has examples for the Pentium II
(Windows NT) and UltraSPARC II (UNIX). The former is new and has many
features that are worth looking at, but UNIX is still a reliable workhorse at many
universities and companies and is well worth examining in detail as well due to its
simple and elegant design.

Chapter 7 (assembly language level) has been brought up to date by using
examples from the machines we have been studying. New material on dynamic
linking has been added as well.

Chapter 8 (parallel computer architectures) has been completely rewritten
from the third edition. It now covers both multiprocessors (UMA, NUMA, and
COMA) in detail, as well as multicomputers (MPP and COW).



xviii PREFACE

The bibliography has been extensively revised and brought up to date. Well
over two-thirds the references refer to works published after the third edition was
published. Binary numbers and floating-point numbers have not undergone much
change recently, so the appendices are largely the same as in the previous edition.

Finally, some problems have been revised and many new problems have been
added since the third edition. Accordingly, a new problem solutions manual is
available from Prentice Hall. It is available only to faculty members, who can
request a free copy from their Prentice Hall representative.

A Web site for this book is available. PostScript files for all the illustrations
used in the book are available electronically. They can be fetched and printed, for
example, for making overhead sheets. In addition, a simulator and other and
software tools are there too. The URL for this site is

http:/fwww.cs.vu.nl/~ast/scod/

The simulator and software tools were produced by Ray Ontko. The author
wishes to express his gratitude to Ray for producing these extremely useful pro-
grams.

A number of people have read (parts of) the manuscript and provided useful
suggestions or have been helpful in other ways. In particular, I would like to
thank Henri Bal, Alan Charlesworth, Kourosh Gharachorloo, Marcus Goncalves,
Karen Panetta Lentz, Timothy Mattson, Harlan McGhan, Miles Murdocca, Kevin
Normoyle, Mike O’Connor, Mitsunori Ogihara, Ray Ontko, Aske Plaat, William
Potvin II, Nagarajan Prabhakaran. James H. Pugsley, Ronald N. Schroeder, Ryan
Shoemaker, Charles Silio, Jr., and Dale Skrien for their help, for which [ am most
grateful. My students, especially Adriaan Bon, Laura de Vries, Dolf Loth, Guido
van 't Noordende, have also helped debug the text. Thank you.

I would especially like to thank Jim Goodman for his many contributions to
this book, especially to Chaps. 4 and 5. The idea of using the Java Virtual
Machine was his, as were the microarchitectures for implementing it. Many of
the advanced ideas were due to him. The book is far better for his having put in
so much effort.

Finally, I would like to thank Suzanne for her patience for my long hours in
front of my Pentium. From my point of view the Pentium is a big improvement
over my older 386 but from hers, it does not make much difference. 1 also want to
thank Barbara and Marvin for being great kids and Bram for always being quiet
when I was trying to write,

Andrew S. Tanenbaum



1

PREFACE XVi

CONTENTS

INTRODUCTION 1

1.1

1.2

1.3

1.4

1.5

STRUCTURED COMPUTER ORGANIZATION 2
1.1.1 Languages, Levels, and Virtual Machines 2
1.1.2 Contemporary Multilevel Machines 4

1.1.3 Evolution of Multilevel Machines 8

MILESTONES IN COMPUTER ARCHITECTURE 13

1.2.1 The Zeroth Generation—Mechanical Corhputers (1642-1945) 13
1.2.2 The First Generation—Vacuum Tubes (1945-1955) 16

1.2.3 The Second Generation—Transistors (1955-1965) 19

1.2.4 The Third Generation—Integrated Circuits (1965-1980) 21

1.2.5 The Fourth Generation—Very Large Scale Integration (1980-?) 23

THE COMPUTER ZOO 24
1.3.1 Technological and Economic Forces 25
1.3.2 The Computer Spectrum 26

EXAMPLE COMPUTER FAMILIES 29
1.4.1 Introduction to the Pentium II 29
1.4.2 Introduction to the UltraSPARC IT 31
1.4.3 Introduction to the picoJava II 34

OUTLINE OF THIS BOOK 36

vii



viii

CONTENTS

2 COMPUTER SYSTEMS ORGANIZATION

2.1

2.2

2.3

2.4

2.5

PROCESSORS 39

2.1.1 CPU Organization 40

2.1.2 Instruction Execution 42

2.1.3 RISC versus CISC 46

2.1.4 Design Principles for Modern Computers 47
2.1.5 lInstruction-Level Parallelism 49

2.1.6 Processor-Level Parallelism 53

PRIMARY MEMORY 56

2.2.1 Bits 56

2.2.2 Memory Addresses 57

2.2.3 Byte Ordering 58

2.2.4 Error-Correcting Codes 61

2.2.5 Cache Memory 65

2.2.6 Memory Packaging and Types 67

SECONDARY MEMORY 68
2.3.1 Memory Hierarchies 69
2.3.2 Magnetic Disks 70
2.3.3 Floppy Disks 73

2.3.4 IDE Disks 73

2.3.5 SCSI Disks 75

2.3.6 RAID 76

2.3.7 CD-ROMs 80

2.3.8 CD-Recordables 84
2.3.9 CD-Rewritables 86
23.10 DVD 86

INPUT/OUTPUT 89
2.4.1 Buses 89

2.4.2 Terminals 91

2.4.3 Mice 99

2.4.4 Printers 101

2.4.5 Modems 106

2.4.6 Character Codes 109

SUMMARY 113

39



CONTENTS IX

3 THE DIGITAL LOGIC LEVEL 117

3.1 GATES AND BOOLEAN ALGEBRA 117
3.1.1 Gates 118
3.1.2 Boolean Algebra 120
3.1.3 Implementation of Boolean Functions 122
3.1.4 Circuit Equivalence 123

3.2 BASIC DIGITAL LOGIC CIRCUITS 128
3.2.1 Integrated Circuits (28
3.2.2 Combinational Circuits 129
3.2.3 Arithmetic Circuits 134
3.2.4 Clocks 139

3.3 MEMORY 141
3.3.1 Latches 141
3.3.2 Flip-Flops 143
3.3.3 Registers 145
3.3.4 Memory Organization 146
3.3.5 Memory Chips 150
3.3.6 RAMs and ROMs 152

3.4 CPU CHIPS AND BUSES 154
3.4.1 CPU Chips 154
3.4.2 Computer Buses 156
3.4.3 Bus Width 159
3.44 Bus Clocking 160
3.4.5 Bus Arbitration 165
3.4.6 Bus Operations 167

3.5 EXAMPLE CPU CHIPS 170
3.5.1 The Pentium IT 170
3.5.2 The UltraSPARC 11 176
3.5.3 The picoJava Il 179

3.6 EXAMPLE BUSES 18]
3.6.1 The ISA Bus 181
3.6.2 The PCI Bus 183
3.6.3 The Universal Serial Bus 189



3.7

3.8

CONTENTS

INTERFACING 193
3.7.1 1/O Chips 193
3.7.2 Address Decoding 195

SUMMARY 198

THE MICROARCHITECTURE LEVEL

4.1

4.2

4.3

44

4.5

4.6

4.7

AN EXAMPLE MICROARCHITECTURE 203
4.1.1 The Data Path 204

4.1.2 Microinstructions 211

4.1.3 Microinstruction Control: The Mic-1 213

AN EXAMPLE ISA: JVM 218
4.2.1 Stacks 218

4.2.2 The IJIVM Memory Model 220
4.2.3 The IJVM Instruction Set 222
4.2.4 Compiling Java to JVM 226

AN EXAMPLE IMPLEMENTATION 227
4.3.1 Microinstructions and Notation 227
4.3.2 Implementation of IJVM Using the Mic-1 232

DESIGN OF THE MICROARCHITECTURE LEVEL 243
4.4.1 Speed versus Cost 243

4.4.2 Reducing the Execution Path Length 245

4.4.3 A Design with Prefetching: The Mic-2 253

4.4.4 A Pipelined Design: The Mic-3 253

44.5 A Seven-Stage Pipeline: The Mic-4 260

IMPROVING PERFORMANCE 264

4.5.1 Cache Memory 265

4.5.2 Branch Prediction 270

4.5.3 Out-of-Order Execution and Register Renaming 276
4.5.4 Speculative Execution 281

EXAMPLES OF THE MICROARCHITECTURE LEVEL 283
4.6.1 The Microarchitecture of the Pentium II CPU 283

4.6.2 The Microarchitecture of the UltraSPARC-II CPU 288
4.6.3 The Microarchitecture of the picoJava II CPU 291

203

4.6.4 A Comparison of the Pentium, UltraSPARC, and picoJava 296

SUMMARY 298



CONTENTS xi

5 THE INSTRUCTION SET ARCHITECTURE LEVEL 303

5.1

52

53

5.4

5.5

OVERVIEW OF THE ISA LEVEL 305

5.1.1 Properties of the ISA Level 305

5.1.2 Memory Models 307

5.1.3 Registers 309

5.1.4 Instructions 311

5.1.5 Overview of the the Pentium I1 ISA Level 311
5.1.6 Overview of the the UltraSPARC II ISA Level 313
5.1.7 Overview of the Java Virtual Machine 317

DATA TYPES 318

5.2.1 Numeric Data Types 319

5.2.2 Nonnumeric Data Types 319

5.2.3 Data Types on the Pentium II 320

5.2.4 Data Types on the UltraSPARC II 321

5.2.5 Data Types on the Java Virtual Machine 321

INSTRUCTION FORMATS 322

5.3.1 Design Criteria for Instruction Formats 322
5.3.2 Expanding Opcodes 325

5.3.3 The Pentium II Instruction Formats 327
5.3.4 The UltraSPARC II Instruction Formats 328
5.3.5 The JVM Instruction Formats 330

ADDRESSING 332

5.4.1 Addressing Modes 333

5.4.2 Immediate Addressing 334

5.4.3 Direct Addressing 334

5.4.4 Register Addressing 334

5.4.5 Register Indirect Addressing 335

5.4.6 Indexed Addressing 336

5.4.7 Based-Indexed Addressing 338

5.4.8 Stack Addressing 338

5.4.9 Addressing Modes for Branch Instructions 341
5.4.10 Orthogonality of Opcodes and Addressing Modes 342
5.4.11 The Pentium I Addressing Modes 344

5.4.12 The UltraSPARC II Addressing Modes 346
5.4.13 The JVM Addressing Modes 346

5.4.14 Discussion of Addressing Modes 347

INSTRUCTION TYPES 348
5.5.1 Data Movement Instructions 348



5.6

5.7

5.8

59

CONTENTS

5.5.2 Dyadic Operations 349

5.5.3 Monadic Operations 350

5.5.4 Comparisons and Conditional Branches 352
5.5.5 Procedure Call Instructions 353

5.5.6 Loop Control 354

5.5.7 Input/Output 356

5.5.8 The Pentium II Instructions 359

5.5.9 The UltraSPARC II Instructions 362

5.5.10 The picoJava II Instructions 364

5.5.11 Comparison of Instruction Sets 369

FLOW OF CONTROL 370

5.6.1 Sequential Flow of Control and Branches 371
5.6.2 Procedures 372

5.6.3 Coroutines 376

5.6.4 Traps 379

5.6.5 Interrupts 379

A DETAILED EXAMPLE: THE TOWERS OF HANOI 383

5.7.1 The Towers of Hanoi in Pentium II Assembly Language 384
5.7.2 The Towers of Hanoi in UltraSPARC II Assembly Language 384
5.7.3 The Towers of Hanoi in JVM Assembly Language 386

THE INTEL 1A-64 388

5.8.1 The Problem with the Pentium 11 390

5.8.2 The 1A-64 Model: Explicitly Parallel Instruction Computing 391
5.8.3 Predication 393

5.8.4 Speculative Loads 395

5.8.5 Reality Check 396

SUMMARY 397

THE OPERATING SYSTEM MACHINE LEVEL 403

6.1

VIRTUAL MEMORY 404

6.1.1 Paging 405

6.1.2 Implementation of Paging 407

6.1.3 Demand Paging and the Working Set Model 409
6.1.4 Page Replacement Policy 412

6.1.5 Page Size and Fragmentation 414

6.1.6 Segmentation 415

6.1.7 Implementation of Segmentation 418



6.2

6.3

6.4

6.5

CONTENTS xiii

6.1.8 Virtual Memory on the Pentium [T 421
6.1.9 Virtnal Memory on the UltraSPARC 426
6.1.10 Virtual Memory and Caching 428

VIRTUAL IO INSTRUCTIONS 429

6.2.1 Files 430

6.2.2 Implementation of Virtual I/O Instructions 431
6.2.3 Directory Management Instructions 435

VIRTUAL INSTRUCTIONS FOR PARALLEL PROCESSING 436
6.3.1 Process Creation 437

6.3.2 Race Conditions 438

6.3.3 Process Synchronization Using Semaphores 442

EXAMPLE OPERATING SYSTEMS 446
6.4.1 Introduction 446

6.4.2 Examples of Virtual Memory 455
6.4.3 Examples of Virtual /O 459

6.4.4 Examples of Process Management 470

SUMMARY 476

THE ASSEMBLY LANGUAGE LEVEL 483

7.1

7.2

7.3

INTRODUCTION TO ASSEMBLY LANGUAGE 484
7.1.1 What Is an Assembly Language? 484

7.1.2 Why Use Assembly Language? 485

7.1.3 Format of an Assembly Language Statement 488
7.1.4 Pseudoinstructions 491

MACROS 4%

7.2.1 Macro Definition, Call, and Expansion 494

7.2.2 Macros with Parameters 496

7.2.3 Advanced Features 497

7.2.4 Implementation of a Macro Facility in an Assembler 498

THE ASSEMBLY PROCESS 498
7.3.1 Two-Pass Assemblers 498
7.3.2 Pass One 499

7.3.3 Pass Two 502

7.3.4 The Symbol Table 505



xiv CONTENTS

7.4 LINKING AND LOADING 506
7.4.1 Tasks Performed by the Linker 508
7.4.2 Structure of an Object Module 511
7.4.3 Binding Time and Dynamic Relocation 512
7.4.4 Dynamic Linking 515

7.5 SUMMARY 519

8 PARALLEL COMPUTER ARCHITECTURES 523

8.1 DESIGN ISSUES FOR PARALLEL COMPUTERS 524
8.1.1 Communication Models 526
8.1.2 Interconnection Networks 530
8.1.3 Performance 539
8.1.4 Software 545
8.1.5 Taxonomy of Parallel Computers 551

8.2 SIMD COMPUTERS 554
8.2.1 Array Processors 554
8.2.2 Vector Processors 555

8.3 SHARED-MEMORY MULTIPROCESSORS 559
8.3.1 Memory Semantics 559
8.3.2 UMA Bus-Based SMP Architectures 564
8.3.3 UMA Multiprocessors Using Crossbar Switches 569
8.3.4 UMA Multiprocessors Using Multistage Switching Networks 571
8.3.5 NUMA Multiprocessors 573
8.3.6 Cache Coherent NUMA Multiprocessors 575
8.3.7 COMA Multiprocessors 585

8.4 MESSAGE-PASSING MULTICOMPUTERS 3586
8.4.1 MPPs—Massively Parallel Processors 587
8.4.2 COWs—Clusters of Workstations 592
8.4.3 Scheduling 593
8.4.4 Communication Software for Multicomputers 598
8.4.5 Application-Level Shared Memory 601

8.5 SUMMARY 609



CONTENTS

9 READING LIST AND BIBLIOGRAPHY

9.1 SUGGESTIONS FOR FURTHER READING 613
9.1.1 Introduction and General Works 613
9.1.2 Computer Systems Organization 614
9.1.3 The Digital Logic Level 615
9.1.4 The Microarchitecture Level 616
9.1.5 The Instruction Set Architecture Level 617
9.1.6 The Operating System Machine Level 617
9.1.7 The Assembly Language Level 618
9.1.8 Parallel Computer Architectures 618
9.1.9 Binary and Floating-Point Numbers 620

9.2 ALPHABETICAL BIBLIOGRAPHY 620

A BINARY NUMBERS

A.1 FINITE-PRECISION NUMBERS 631

A.2 RADIX NUMBER SYSTEMS 633

A.3 CONVERSION FROM ONE RADIX TO ANOTHER 635
A.4 NEGATIVE BINARY NUMBERS 637

A5 BINARY ARITHMETIC 640

B FLOATING-POINT NUMBERS

B.1 PRINCIPLES OF FLOATING POINT 644
B.2 IEEE FLOATING-POINT STANDARD 754 646

INDEX

XV

613

631

643

653



INTRODUCTION

A digital computer is a machine that can solve problems for people by carry-
ing out instructions given to it. A sequence of instructions describing how to per-
form a certain task is called a program. The electronic circuits of each computer
can recognize and directly execute a limited set of simple instructions into which
all its programs must be converted before they can be executed. These basic
instructions are rarely much more complicated than

Add 2 numbers.
Check a number to see if it is zero.

Copy a piece of data from one part of the computer’s memory to another.

Together, a computer’s primitive instructions form a language in which it is
possible for people to communicate with the computer. Such a language is called
a machine language. The people designing a new computer must decide what
instructions to include in its machine language. Usually, they try to make the
primitive instructions as simple as possible, consistent with the computer’s
intended use and performance requirements, in order to reduce the complexity and
cost of the electronics needed. Because most machine languages are so simple, it
is difficult and tédious for people to use them.

This simple observation has, over the course of time, led to a way of structur-
ing computers as a series of abstractions, each abstraction building on the one
below it. In this way, the complexity can be mastered and computer systems can

1



