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PREFACE

The first three editions of this book were based on the idea that a computer
can be regarded as a hierarchy of levels, each one performing some well-defined
function. This fundamental concept is as valid today as it was when the first edi-
tion came out, so it has been retained as the basis for the fourth edition. As in the
first three editions, the digital logic level, the microarchitecture level, the instruc-
tion set architecture level, the operating system machine level, and the assembly
language level are all discussed in detail (although we have changed some of the
names to reflect modern practice).

Although the basic structure has been maintained, this fourth edition contains
many changes, both small and large, that bring it up to date in the rapidly chang-
ing computer industry. For example, all the code examples, which were in Pascal,
have been rewritten in Java, reflecting the popularity of Java in the computer
world. Also, the example machines used have been brought up to date. The
current examples are the Intel Pentium II, the Sun UltraSPARC II, and the Sun
picoJava II, an embedded low-cost hardware Java chip.

Multiprocessors and parallel computers have also come in widespread use
since the third edition, so the material on parallel architectures has been com-
pletely redone and greatly expanded, now covering a wide range of topics, from
multiprocessors to COWs.

The book has become longer over the years (although still not as long as some
other popular books on the subject). Such an expansion is inevitable as a subject
develops and there is more known about it. As a result, when the book is used for
a course, it may not always be possible to finish the book in a single course (e.g.,

xvi



PREFACE Xvii

in a trimester system). A possible approach would be to do all of Chaps. 1, 2, and
3, the first part of Chap. 4 (up through and including Sec. 4.4), and Chap. 5 as a
bare minimum. The remaining time could be filled with the rest of Chap. 4, and
parts of Chaps. 6, 7, and 8, depending on the interest of the instructor.

A chapter-by-chapter rundown of the major changes since the third edition
follows. Chapter 1 still contains an historical overview of computer architecture,
pointing out how we got where we are now and what the milestones were along
the way. The enlarged spectrum of computers that exist is now discussed, and our
three major examples (Pentium I, UltraSPARC II, and picoJava II) are intro-
duced.

In Chapter 2, the material on input/output devices has been updated,
emphasizing the technology of modern devices, including RAID disks, CD-
Recordables, DVD, and color printers, among many others.

Chapter 3 (digital logic level) has undergone some revision and now treats
computer buses and modern I/O chips. The major change here is additional
material on buses, especially the PCI bus and the USB bus. The three new exam-
ples are described here at the chip level.

Chapter 4 (now called the microarchitecture level) has been completely
rewritten. The idea of using a detailed example of a microprogrammed machine
to illustrate the ideas of data path control has been retained, but the example
machine is now a subset of the Java Virtual Machine. The underlying microarchi-
tecture has been correspondingly changed. Several iterations of the design are
given, showing what trade-offs are possible in terms of cost and performance.
The last example, the Mic-4, uses a seven-stage pipeline and provides an easy
introduction to how important modern computers, such as the Pentium II, work.
A new section on improving performance has been added, focusing on the most
recent techniques such as caching, branch prediction, (superscalar) out-of-order
execution, speculative execution, and predication. The new example machines
are discussed at the microarchitecture level.

Chapter 5 (now called the instruction set architecture level) deals with what
many people refer to as “machine language.” The Pentium II, UltraSPARC II and
Java Virtual Machine are used as the primary examples here.

Chapter 6 (operating system machine level) has examples for the Pentium II
(Windows NT) and UltraSPARC II (UNIX). The former is new and has many
features that are worth looking at, but UNIX is still a reliable workhorse at many
universities and companies and is well worth examining in detail as well due to its
simple and elegant design.

Chapter 7 (assembly language level) has been brought up to date by using
examples from the machines we have been studying. New material on dynamic
linking has been added as well.

Chapter 8 (parallel computer architectures) has been completely rewritten
from the third edition. It now covers both multiprocessors (UMA, NUMA, and
COMA) in detail, as well as multicomputers (MPP and COW).
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The bibliography has been extensively revised and brought up to date. Well
over two-thirds the references refer to works published after the third edition was
published. Binary numbers and floating-point numbers have not undergone much
change recently, so the appendices are largely the same as in the previous edition.

Finally, some problems have been revised and many new problems have been
added since the third edition. Accordingly, a new problem solutions manual is
available from Prentice Hall. It is available only to faculty members, who can
request a free copy from their Prentice Hall representative.

A Web site for this book is available. PostScript files for all the illustrations
used in the book are available electronically. They can be fetched and printed, for
example, for making overhead sheets. In addition, a simulator and other and
software tools are there too. The URL for this site is

http:/fwww.cs.vu.nl/~ast/scod/

The simulator and software tools were produced by Ray Ontko. The author
wishes to express his gratitude to Ray for producing these extremely useful pro-
grams.

A number of people have read (parts of) the manuscript and provided useful
suggestions or have been helpful in other ways. In particular, I would like to
thank Henri Bal, Alan Charlesworth, Kourosh Gharachorloo, Marcus Goncalves,
Karen Panetta Lentz, Timothy Mattson, Harlan McGhan, Miles Murdocca, Kevin
Normoyle, Mike O’Connor, Mitsunori Ogihara, Ray Ontko, Aske Plaat, William
Potvin II, Nagarajan Prabhakaran. James H. Pugsley, Ronald N. Schroeder, Ryan
Shoemaker, Charles Silio, Jr., and Dale Skrien for their help, for which [ am most
grateful. My students, especially Adriaan Bon, Laura de Vries, Dolf Loth, Guido
van 't Noordende, have also helped debug the text. Thank you.

I would especially like to thank Jim Goodman for his many contributions to
this book, especially to Chaps. 4 and 5. The idea of using the Java Virtual
Machine was his, as were the microarchitectures for implementing it. Many of
the advanced ideas were due to him. The book is far better for his having put in
so much effort.

Finally, I would like to thank Suzanne for her patience for my long hours in
front of my Pentium. From my point of view the Pentium is a big improvement
over my older 386 but from hers, it does not make much difference. 1 also want to
thank Barbara and Marvin for being great kids and Bram for always being quiet
when I was trying to write,

Andrew S. Tanenbaum
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INTRODUCTION

A digital computer is a machine that can solve problems for people by carry-
ing out instructions given to it. A sequence of instructions describing how to per-
form a certain task is called a program. The electronic circuits of each computer
can recognize and directly execute a limited set of simple instructions into which
all its programs must be converted before they can be executed. These basic
instructions are rarely much more complicated than

Add 2 numbers.
Check a number to see if it is zero.

Copy a piece of data from one part of the computer’s memory to another.

Together, a computer’s primitive instructions form a language in which it is
possible for people to communicate with the computer. Such a language is called
a machine language. The people designing a new computer must decide what
instructions to include in its machine language. Usually, they try to make the
primitive instructions as simple as possible, consistent with the computer’s
intended use and performance requirements, in order to reduce the complexity and
cost of the electronics needed. Because most machine languages are so simple, it
is difficult and tédious for people to use them.

This simple observation has, over the course of time, led to a way of structur-
ing computers as a series of abstractions, each abstraction building on the one
below it. In this way, the complexity can be mastered and computer systems can

1



