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INTRODUCTION

This work concerns the large-time asymptotic behavior of solutions of the
initial-value problem for the linear dispersive equation

uy +1R(D)u = 0,
w(z,0) = ug(x),

where the dispersive symbol R(k) is homogeneous of degree r > 1 and is generally
of the form
pik™ k>0,

where the constants p, p_ are real numbers. We define [R(D)u]”(k) = R(k)1i(k)
where (k) = ffooo e~ "%y (z) dz is the Fourier transform of u. Different choices
for 7, p4, p_ allow us to incorporate the following special cases:

Equation 1R(D)u R(k) r P+ =

Linear Schrodinger —ipliy, pk? 2 p p
Linearized Benjamin-Ono —pHu,, —pk|k| 2 —p p
Linearized KdV Puges  —pkd 3 =p p

KdV is an abbreviation for Korteweg-de Vries, p € R and H denotes the Hilbert
transform. The corresponding nonlinear dispersive wave equations

uy £ i|1t|211, — 1ply, = 0, Nonlinear Schrodinger
Uy + iy — pHtyy = 0, Benjamin-Ono
Up + Uty + Py, = 0, Korteweg-de Vries

have been the subjects of intensive investigation in recent years because of their
importance to physical applications (wave motions), because of the many fas-
cinating properties of their solutions (such as the existence of solitons), and
because there are methods (inverse scattering transforms) by which exact solu-
tions may be computed and the pure initial-value problem solved in the same
manner that the Fourier transform allows us to solve the above linear equations:
see Newell [N]. It has also been found that solutions of more general nonlinear
dispersive equations possess many of the same properties as solutions of these
three integrable equations: however, the proofs of these properties cannot be
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based on any special structure of integrability. Frequently the proofs are based
on an analysis of solutions of the linear dispersive equation, coupled with a per-
turbative argument allowing one to deal with the nonlinearity. In regard to
large-time behavior of solutions, no comprehensive account exists in the litera-
ture dealing with the solutions of constant coefficient linear dispersive equations
(although limited and scattered results for special cases have appeared). This
work is an attempt to fill this gap. One of our main goals has been to provide a
reference work which researchers and applied scientists in this area could consult
for the detailed large-time asymptotic expansions (and their proofs) of solutions
of these linear dispersive equations. It is hoped that these results might be a
stimulus to further progress in the analysis of the large-time asymptotic behavior
of solutions of nonlinear dispersive equations.

Before proceeding, we offer the following as motivation for the detailed study
of the large-time asymptotic behavior of solutions of linear or nonlinear wave
equations. In any physical situation where wave motion is encountered after
sufficient time has elapsed for the transient and incidental features of the initial
disturbance to have faded, one observes the “large-time” behavior of the wave
motion. Actually, the elapsed time between the initial disturbance and the point
at which the transient features have become relatively insignificant need not be
that large. Thus large-time asymptotic expansions can be an effective way of
approximating the wave motion over even intermediate time scales. Of course
there is a definite limit to the accuracy of such an approximation to the solution
at a fixed time. Greater accuracy can usually only be obtained by numerical
calculations. In contrast to the results of numerical computations, the large-time
asymptotic expansion can frequently be determined as a closed form expression.
As a consequence of this closed form expression, one gains significant and deep
insight into the solution; e.g. how it decays in various regions, how various
functionals of the solution behave, where the solution oscillates and where it does
not, which features of the initial disturbance are preserved and which ones are
not, etc.. Such knowledge is often impractical to obtain by means of numerical
calculations alone. Hence the large-time asymptotic behavior is an important
and frequently accessible component of knowledge about the solution which is
complementary to knowledge obtained by direct numerical computations.

We make the assumption that uy = |D|7(vo+Hwv; ), where vy, v; are integrable
complex-valued functions with compact support, and the real number ~ satisfies
v > —1. We assume that |09(0)| + |[01(0)| # 0. These assumptions will allow
us, under different choices for vy,vy,v; to understand several different types of
solutions.

(1) Derivatives of solutions: uy = 92Uy, where j is a nonnegative integer.
These can be obtained by letting v = j and

(Up,0) 7 =0 mod 4,
(0,—-Up) j=1 mod 4,
(=Up,0) j =2 mod 4,
(0,Uy) 7 =3 mod4.

(vo,v1) =



INTRODUCTION ix

The understanding of the large-time behavior of derivatives is relevant to
the problem of the asymptotic balance in solutions of nonlinear dispersive
equations (see section 5.3).

(2) Fractional Derivatives or Integrals of solutions: u, = |D|"U,,
where v > —1 is a real number. Understanding of the case v > 0
has been found to be useful in the study of the large-time behavior of
nonlinear dispersive equations. The case —1 < v < 0 exposes some of
the variety of large-time asymptotic behaviors that can result from initial
data in L? spaces (see section 5.2).

(3) Solutions which decay slowly as |z| — oco: see section 5.4.

The compact support condition is convenient for us, but not absolutely neces-
sary; our results could be generalized somewhat. Also, it should be noted that
many interesting initial data which decay as |z| — oo like a negative power of |z|
can be put into the above form. It is not our purpose to prove results about the
solution arising from an arbitrary initial datum in some commonly used function
classes (such as LP(R)); such an assumption on ug is compatible with a large
variety of different asymptotic behaviors. It is our purpose to prove sharp results
for initial conditions of the above type because such results map out the types
of asymptotic behavior which can occur, with a minimum amount of extraneous
complications. In fact, our results show why it is so hard to state or prove a
sharp result valid for all initial data in spaces such as LP(R), 1 < p < oo. For
more details, consult chapter five.

The solution of this initial-value problem can be expressed as the following
Fourier integral

1 . .
u(z,t) = 2—/ ekt~ B k| [y (k) — i sgn(k)dy (k)] dk.
s

— 00

This integral for u(z,t) breaks naturally into the sum of two integrals:

R Rl
71.(13, t) = g/ e’kze_”“fk tk’[’f)()(k) = 'I’IAJl(kI)]dk
0
1 e . . i
+ — e~ kT KLY (50 (— k) + 101 (—k)] dk.
2m Jo

Thus it suffices to analyze the large-time behavior of the single integral
tef [ ikz—ipk”
I(z,t) = I(z,t;7,p,7, V) = / etk= =ik Yy () d,
0

where V (k) is an entire function of k € C. In fact, since

I(z,t;r,p,7, V) = I(—z,t;7,—p,7, V)

where V(k:) = V/(k), we see that it suffices to consider this integral when p > 0.
Rather than define this integral as a limit of a family of absolutely convergent
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artificially regularized integrals, we will exploit the freedom we have (by Cauchy’s
theorem) to change the contour of integration, so that on the new contour the
integral will converge absolutely, and to the same value. The exact nature of
these new contours will be discussed later.

Although our ultimate goal is to analyze the solution u(z,t), we set as an inter-
mediate goal the complete asymptotic description of the integral I(z,t;7, p, v, V).
This endeavor will occupy the first three chapters. In chapters four and five we
will return to the analysis of u(z,t). We approach the study of the integral I(z.1)
first from the standpoint of matched asymptotic expansions (chapters one and
two) and then we obtain an expansion which is uniformly valid as ¢ = oo and
(=1)*z > 0 is arbitrary (chapter three). Both of these approaches have signifi-
cant redeeming features and we view them as complementary.

All this is necessary because the asymptotic expansion as t — oo, b= z2t7! €
R fixed, of the function I(bt,t) is essentially different from the asymptotic expan-
sion as t = oo, £ = 2t~ /" € R fixed, of I(£t'/7,t). The asymptotic expansions
of I(bt,t) are called the outer expansions (studied in chapter one); there are two
of them, one for b < 0 and the other for b > 0. The terms of the outer expansions
involve only elementary functions and the derivatives of V (k). The derivation of
the outer expansions and control of the associated error terms when b is fixed can
be done using the classical method for Laplace contour integrals as discussed in
Olver [O1], Bleistein and Handelsman [BH], Wong [W], and other places as well.
We outline this method in section 1.1. In fact, in that same section we derive
some general formulae for the coefficients which appear in Laplace expansions:
these formulae are useful when one is studying (as we are) the dependence of
the expansion on a parameter (such as b). The study of the outer expansions
is rather lengthy because there is a different expansion for each connected com-
ponent of the steepest descent contour which the initial path of integration is
deformed into. Several authors have pointed out that the complete determi-
nation of the steepest descent contours is unnecessary in order to compute the
Laplace expansion as well as to control the error in the classical case where b
is constant. Nevertheless, in section 1.2 we have given a fairly complete study
of these contours, and a proof that the original contour can be deformed into a
union of these special contours. Our error estimates must be proved under sig-
nificantly weaker assumptions on b than in the classical case (for reasons which
will be explained below) and the proofs (sections 1.4 and 1.7) use our detailed
knowledge of the steepest descent contours. In order that we might prove sharp
error estimates, it is essential that we know exactly how the derivatives of V(%)
behave as k — 0o on rays and in sectors in the k plane. Thus in section 1.5 we
study of the leading-order behavior of V (k) = o(k), under carefully formulated
conditions on a function v(z) with compact support. These assumptions on v(z).
which we call the standard assumptions, are invoked extensively in chapters four
and five.

Unfortunately, the asymptotic character of the outer expansions break down
and the error estimates obscure the “true” leading-order terms if b is allowed
to tend to 0 too rapidly as t — oo. Indeed this must happen, since as we said
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above, there is an inner expansion of I(£t'/7.t), completely distinct from the
outer expansions, which holds as t =& o0, £ € R fixed. The inner expansion
(studied in chapter two) is in descending powers of ¢t with coefficients which
involve the derivatives of V at k = 0 and certain special functions of . These
special functions appear naturally, and cannot be avoided. The inner expansion
is derived by expanding V (k) in a Taylor series at k = 0, and then integrating
term-by-term (see section 2.1). The proofs of the sharp error estimates (sections
2.2 and 2.3) again utilize our detailed knowledge of the steepest descent contours.

The asymptotic character of the inner expansion breaks down as [{| — ¢
hence we must live with three distinct expansions, each valid in its own asymp-
totic region. A complete matched asymptotic description of I(z,%) is obtained
by proving the validity of the outer and inner expansions in eztended asymptotic
regions ([KC]) in the (z,t) plane —the outer expansions in the disjoint regions
R, and R_, and the inner expansion in the inner region R,. These extended
regions will be defined precisely in sections 1.1 and 2.1, but they have the fol-
lowing properties. Ri eventually (i.e for sufficiently large #) contains every ray
z = bt, where £b > 0 is a constant. The inner region, R, eventually contains
every curve of the form z = £t!/", where £ is a real constant. R, and Ry overlap
for all t > 1; also R_ and Ry overlap for all ¢ > 1. Furthermore, we must prove
that in the overlap of two regions the two expansions which are valid there can
be matched to one another. We perform this matching in section 2.4.

The necessity of concerning oneself with carefully defined asymptotic regions
and matching different expansions in an overlap region is the disagreeable aspect
of the matched asymptotic description. This could be avoided if one had a single
expansion which retains its asymptotic character independently of the value of z.
Such an expansion is said to be uniformly valid. Methods for obtaining uniformly
valid expansions have been studied for some time, see Wong [W] for references.
When r is an integer, one finds that the phase function kb — pk" has exactly r —1
complex stationary points, some of which contribute to the asymptotic expansion
of I(z,t), all of which are simple and distinct for b # 0, but which coalesce as
b — 0. This coalescence is the opportunity for the Laplace expansions to become
nonuniformly valid. The usual approach to this problem of non-uniformity, as
pioneered by Chester Friedman Ursell [CFU], and developed by many others,
most notably Bleistein [B], is to write V(k) as the sum of a polynomial in k
which agrees with V (k) at all the problem points (stationary points, endpoints,
singularities, etc.) and a remainder. Thus I(z,t) breaks into two integrals: the
integral involving the polynomial approximation can be expressed in terms of
special functions, and provides the first term(s) of an uniformly-valid expansion
of I(z,t); the integral involving the remainder decays more rapidly in 7 than
the first term(s), as one discovers by integrating by parts, whereupon a factor
of t=1 appears multiplied by an integral of the exact same appearance as I(x.t)
but with a different function substituted for V (k). This process can then be
repeated any number of times to generate as many terms as desired. See §3.1
for further discussion.

When 7 is not an integer, it is not exactly clear how this procedure is to be
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carried out. One problem when r is irrational is that there are now infinitely
many stationary points on the Riemann surface forming the domain of the phase
function, and it is not clear how to construct an approximating function to V (k).
Even when r is rational, when there are still finitely many stationary points, it is
not clear how to construct the approximating function so that the remainder has
good enough behavior so that the process can be repeated indefinitely, thereby
generating a complete asymptotic expansion. When 7 is not an integer, it is not
clear that the integration by parts procedure can be generalized.

Thus in section 3.1 we use a different procedure to generate a complete
uniformly-valid asymptotic expansion of I(z,t), an approach which will work
for all real » > 2. The basic idea is simple. We separate I(z,t) as a sum of
integrals over the connected steepest descent contours employed in the analysis
of the outer region. Then we expand V (k) in a Taylor series about the saddle
point; each connected contour passes through at most one saddle point. When
this Taylor expansion is integrated term-by-term, certain special functions of the
variable ¢ emerge because of the scaling properties of the phase function. This
yields an uniformly-valid expansion of the integral over each steepest descent
contour. These expansions are then added together to obtain an uniformly-valid
expansion of I(z,t). These expansions are written down in full detail, together
with their sharp error estimates, in section 3.2. The method of integrating Tay-
lor expansions (or other expansions closely related to Taylor expansions) for
generating uniformly-valid asymptotic expansions was used in the original pa-
per of Chester, Friedmann, and Ursell [CFU], and on pages 352 357 in the book
of Olver [O1]. As far as we can tell, the idea of applying this method to each
connected contour of steepest descent is new. Since the nature of the steepest de-
scent contours depends on whether b > 0 or b < 0, the resulting uniformly-valid
expansions look different in these two cases. But they retain their asymptotic
character even as z — 0. In the inner region they are shown to agree (in section
3.1) with the inner expansion, which is the same for both z > 0 and z < 0. We
obtain full asymptotic expansions as |[£| = oo of the special functions involved,
and show (in section 3.1) that the uniformly-valid expansions reduce to the outer
expansions in the outer regions.

The only disadvantage of the uniform expansions is that they involve a sig-
nificant number of special functions, which are themselves defined by integrals.
When r = 2 (section 4.1) or r = 3 (section 4.5) these can be identified with
or expressed in terms of well-known special functions, such as confluent hyper-
geometric functions, or Airy functions; but for other values of r these special
functions have not been studied as much. We need the fundamental special
function

oo

lef . s -

F.(rd:y) = / exp(—L0" +yo)o’ (o - y=1)" do,
0

where n > 0 is an integer, § > 0 is a real number, and y lies on the Riemann

surface of the function y =1, i.e. Y E S{yrlTl }. When r > 3 is an odd integer we
also need two incomplete forms of this function. All the other special functions
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we need can be expressed in terms of these. When r = 2 or » = 3 we also derive
recursion relations for these functions in the variable n, which allow us to reduce
the number of special functions to a small number (i.e. r) of truly essential
functions. These recursion relations also allow us to compare our uniformly-
valid expansions to the uniformly-valid expansions which can be obtained (when
r = 2,3) by the integration-by-parts procedure mentioned above. Especially in
the case r = 3 (in section 4.5) we discuss the relative merits of these two types
of uniformly-valid expansions. As mentioned above, an expansion generated by
an integration-by-parts procedure is not available when r is not an integer.

It turns out that even the leading-order terms of uniformly-valid asymptotic
expansions are not uniquely determined. Since the higher-order terms depend
very sensitively on the exact form of the leading-order term, they are also not
uniquely determined. Despite this nonuniqueness it is worthwhile to compute
all the terms of the asymptotic expansion. Knowledge of the higher terms in the
expansion allows us to formulate sharp error estimates for finite term asymptotic
approximations. Also, as we have already mentioned, asymptotic expansions can
be used to compute the solution u(z,t), and a variable number of terms of the
expansion are needed in such calculations, depending on the particular point
(z,t). We will not discuss the realistic computable a priori error bounds needed
to decide if the desired accuracy has been obtained with a given number of terms.

In chapter four, in addition to the above topics, we also return to the original
subject of the solution of the linear dispersive equation —but only in the special
cases 7 = 2 and r = 3. We devote an entire section to each of the three linear
equations listed as examples earlier, the Linear Schrodinger (section 4.3), the
Linearized Benjamin-Ono (section 4.4), and the Linearized Korteweg-de Vries
(section 4.6) equations. In each of these three cases we write down the complete
uniformly-valid asymptotic expansions, together with the sharp error estimates.
We also give the leading-order terms of the outer and inner expansions, and their
error estimates. In the case r = 2 the outer expansion (and our uniformly-valid
expansion) can lose its asymptotic character in the limit |z| — oo, t > 1 fixed.
Thus we find the correct leading-order term in this limit, and prove an error
estimate in section 4.2. This enables us to give the correct leading-order term
of the asymptotics of the solutions of the Linear Schrodinger and Linearized
Benjamin-Ono equations as |z| — oo, t > 1 fixed, when the initial data is only
of moderate smoothness.

In chapter five we begin to discuss some applications of our results in the pre-
vious chapters to solutions of the linear dispersive equation with general » > 2.
Although we restrict our discussion to equations possessing real-valued solutions,
such as Linearized Benjamin-Ono and Linearized KdV, most of what we say can
be reformulated to apply to Schrodinger-type equations, i.e. to uy+ip|D|"u = 0.
Although we do not formulate or prove any results about solutions of nonlinear
dispersive equations, everything in chapter five is directed toward the under-
standing of the nonlinear case. We have tried to make it possible to read chapter
five without having to digest chapters one through four, although we have prob-
ably not succeeded completely. We make frequent references to results in the
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literature on nonlinear dispersive equations, and attempt to describe succinctly
the relevant features of the theorems appearing in those papers, but we are not
attempting a survey of such results. We hope our discussion will be helpful to
both the expert and the newcomer to the field. It will be apparent that there is a
great deal which is still unknown about the nonlinear case, and one of our main
goals is to formulate some reasonable conjectures about when we can expect
solutions of a nonlinear dispersive equation to behave to the leading-order as
t — oo like solutions of the corresponding linear dispersive equation. We do not
completely reach even this goal; but we do identify some of the main unresolved
issues which we feel are of central importance.

We have tried to keep the prerequisites to a minimum for the reader. A
reasonable knowledge of single variable complex analysis (for example on the
level of the book of Ahlfors, [Ahl]) should be adequate preparation for chap-
ters one through three. We refer to Riemann surfaces several times, but we
only use the fundamental idea of them as natural domains of certain analytic
functions, especially when we wish to avoid a detailed discussion of branches of
multivalued functions. In chapters four and five we also assume a certain famil-
iarity with Fourier analysis, and Fourier multiplier operators, such as |D| or
H = —isgn(D). Whenever a line of argument is presented for the first time, we
try to write it out in detail. Considerable effort has been expended to make our
expansions explicit, useful in computations, and reliable. In particular, we have
endeavored to relate our special functions as much as possible to those discussed
in Olver [O1] and Abramowitz and Stegun [AS]. However, it is inevitable that
some errors are present. The author would appreciate being made aware of any
errors the reader discovers in the text or formulae.

The author would like to acknowledge many helpful conversations with John
Albert over a period of several years about the subject of this work. The author
also greatly appreciates the invaluable assistance of F. W. J. Olver in directing
him to the most recent references pertaining to chapters 1-3 of this work. Thanks
to Doug Meade for his help in generating the figures using Maple. Thanks to
Jerry Bona and John Albert for looking at preliminary versions of this work and
making helpful suggestions. Thanks to Matania Ben-Artzi for references and
discussion on smoothing effects relevant to section 5.2. The author acknowledges
support of the Office of Naval Research, grant N00014-94-1-1163 during the
summers of 1994 and 1995 while this work was in progress. Thanks are extended
to the author’s wife, Jean, and to his children, Amy and Nathan, for their love,
patience, and prayers. Thanks also be to the Creator, Sustainer, and Lord of
the universe, whose knowledge and understanding surpasses that of the entire
human race more than the sun surpasses a spark. His unmerited favor, extended
through His Son, Jesus Christ, has given me strength throughout this work.
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CHAPTER 1

LAPLACE EXPANSIONS, OUTER REGIONS

1.1 Generalities, Notation

We define b = z/t and ¢(k;b,r,p) = ikb — ipk”. We will usually suppress
whatever parameters from our notation that are understood from the context.
With our new notation we have

I(z,t;r.p,y,V):/ e? O LYY (k) dk.

0

V (k) is an entire function, the Fourier transform of an integrable function with
compact support. Techniques for computing asymptotic expansions as t — oo
for this integral when b is fixed can be found in [O1], [BH], [W]. The outer regions
R4 are defined as follows:

Ry = {(z,t) e R x [1,00) | £zt ¥ > €},

where % < f < 1land 0 < € < 1 are constants. The principal contributions
in this case arise from the singularity (or zero) and endpoint of integration at
k = 0 and from the relevant saddle points k; € C, where ¢'(k;) = 0. Since
@' (k) = ib — irpk™ ™!, we have that

kj(b,r) = B=e'ST

where sgn(b) = (—=1)*, @ € {0,1}, B =
Not all of these saddle points are asymptotically relevant. Exactly which saddle
points are relevant will be revealed when we deform the original contour of
integration into a union of steepest descent contours (SDCs) starting at k = 0,
(maybe) through some saddle points, and proceeding to infinity in the nearest
valley to the ray argk = 0. A walley is a region in the complex k-plane where
Rep(k) < —M, where M > 1. Likewise a hill is a region in the complex k-plane
where Rp(k) > M, where M > 1. The asymptotic centers of the valleys (resp.
hills) can be identified by rays along which Rp(k) decreases (resp. increases)
most rapidly as k = co. If k = Re*® we have that

L‘ §¢ = (27 +a), and j € Z.

rp|?

Re(Re'®) = —bRsin(0) + pR" sin(r6).

Hence the asymptotic center of the valleys are along the rays 6§ = V; = l,(—% +

T

2mj), where j € Z. Likewise the asymptotic center of the hills are along the rays
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0 = H; = (3 + 2nj), where j € Z. We will refer to hills and valleys by the
arguments of their asymptotic centers.

The initial contour of integration (i.e. # = 0) is between a hill (at § = H, =
5-) and a valley (at # = Vy = —3-). The ray of integration cannot be rotated in
the direction of the hill, but it can be rotated toward the valley. But it cannot
be rotated beyond that valley up onto the next hill, i.e. beyond § = —=. Thus
the deformed path of integration, whatever else it does, must eventually go to
infinity in the valley V. We call this valley the final valley.

A steepest descent contour (SDC) starting at a (simple) saddle point k; leaves
tangent to a certain line through the saddle point and proceeds downhill as fast as
possible, i.e. always travelling in the opposite direction as the gradient vector of
Re(k). In order to determine this line we must expand ¢(k) in the neighborhood
of the saddle point. A short calculation will verify that

e(kj) = (—=1)(r — 1)p3ﬁeisy,
_wll(kj) =ar(r— 1),03%?@1'(7—2)5;"

Suppose k is on the ray k — k; = Re'™. Then

t " 22w
tp(k) = to(k;) + =¢" (k;) R?e™ + O(R?)

2
t : ; ;
= tp(k;) — |2—||<p"(k]-)|R2 exp [targ(t) + iwy + 12w)
+O(R?),

where 0 < R < 1 and wy = arg(—¢"(k;)) = 5 +(r—2)8§+27Z. Hence we must
choose arg(t) + wy + 2w = 0 if the ray is to be tangent to a SDC. This equation
determines w up to an integral multiple of m:
arg(t) (2a+1) 1,
w=——0= - 1 7r+25j+7rZ.

Following Olver, we will first make a choice of w according to the above. Since
square roots of the quantity —¢"(k;)t appear in the terms of the expansion
arising from this saddle point, it will be convenient to require that arg(t) + wy
be determined by the choice of w by the relation arg(t) + wy + 2w = 0. The
value of the square root will then be determined by that choice of argument. So
if w changes by m, such as happens when one departs the saddle point in the
opposite direction as before, the value of [—¢"(k;)t]'/? changes by a factor of
—1. Obviously, it is important that this choice of branch be used consistently.

Steepest descent contours turn out to be along level curves of Jp(k) (see
[BH]). We note that

Sp(Re™) = bR cos(8) — pR" cos(rh).
Thus the SDC through the saddle point k; is part of the polar locus

bRcos(8) — pR" cos(r) = (—1)*(r — 1)pB7 cos(S5).



