Notes andwR‘évports
in
Computer Science and Applied Mathematics

Computer
- Performance
Modeling
Handbook

Edited by

STEPHEN S.LAVENBERG



COMPUTER
PERFORMANCE MODELING
HANDBOOK

Edited by ‘
STEPHEN S. LAVENBERG/

iy
IBM Thomas J. Watson Research Cent
Yorktown Heights, New York

ACADEMIC PRESS 1983
A Subsidiary of Harcourt Brace Jovanovich, Publishers

New York London
Paris San Diego San Francisco Sao Paulo Sydney Tokyo Toronto



COPYRIGHT (© 1983, BY ACADEMIC PRESs, INC.

ALL RIGHTS RESERVED.

NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR
TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC
OR MECHANICAL, INCLUDING PHOTOCOPY, RECORDING, OR ANY
INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT
PERMISSION IN WRITING FROM THE PUBLISHER.

ACADEMIC PRESS, INC.
111 Fifth Avenue, New York, New York 10003

United Kingdom Edition published by

ACADEMIC PRESS, INC. (LONDON) LTD.
24/28 Oval Road, London NW1 7DX

Liprary of Congress Cataloging in Publication Data
Main entry under title:

Computer performance modeling handbook.

(Notes and reports in computer science and applied
mathematics ; no. 4)

Includes bibliographical references and index.

1. Electronic digital computers--Evaluation.
2. Digital computer simulation. I. Lavenberg, Stephen S.
II. Series.
WA76.9.E94C66 1983 001.64'028'7 82-8840
ISBN 0-12-438720-9 AACR2

PRINTED IN THE UNITED STATES OF AMERICA

83 84 85 86 987654321



Preface

Computer systems have become so complex that intuition alone is not
sufficient to predict their performance, and mathematical modeling has
come to play an important role. Mathematical models of system perfor-
mance range from relatively simple ones, whose solution can be obtained
analytically, to very complex ones that must be simulated. This Computer
Performance Modeling Handbook is a state-of-the-art reference manual
for computer performance modeling practitioners. It is intended to help
practitioners formulate and apply performance models by providing (1)
analytical results for a wide variety of performance models, (2) guidance
in the simulation of performance models, and (3) numerous application
examples. It differs from a textbook in that mathematical derivations are
not presented; rather, the emphasis is on easy-to-apply analytical results
and simulation procedures. Anyone working in the area of computer per-
formance evaluation should find the handbook indispensable. In addition,
it is a useful source of material for performance evaluation courses at the
senior or graduate level.

Chapter 1 (‘““Introduction to Performance Modeling’” by Stephen S.
Lavenberg) provides an introduction to the analysis, simulation, and vali-
dation of computer performance models. Chapter 2 (‘‘Mathematical Pre-
requisites’’ by Stephen S. Lavenberg) contains basic material on probabil-
ity, random variables, and the Poisson process to aid a modeler in
understanding the assumptions made about a model and the results ob-
tained from the analysis or simulation of the model. Little’s formula, an
important formula relating performance measures, is also discussed.

The models that play the most important role in performance evaluation
are queueing models, in particular, queueing networks. Chapter 3 (‘*Ana-
lytical Results for Queueing Models”” by Stephen S. Lavenberg and
Charles H. Sauer) contains the most extensive collection of analytical
results for queueing models currently available in the literature. The
results are either formulas for performance measures or, as is typically
the case for queueing networks, algorithms that can be used to compute
performance measures. Over thirty examples are presented. Chapter 4
(‘“‘Approximate Analysis of Queueing Networks’’ by Stephen S. Laven-
berg and Charles H. Sauer) presents approximate analysis methods for

xi




Xii Preface

queueing networks for which either exact analytical results are not avail-
able or, if they are available, the computational expense is prohibitive.
This is an area of continuing research activity. However, several methods
that have practical uses are presented.

Chapters 5 and 6 deal with statistical aspects of simulation. Chapter 5
(‘“‘Generation Methods for Discrete Event Simulation’ by Gerald S.
Shedler) describes methods for generation of the random inputs that drive
a simulation. General methods for random number generation are dis-
cussed and specific algorithms are provided for generation of samples
from a variety of distributions. Chapter 6 (‘‘The Statistical Analysis of
Simulation Results’’ by Peter D. Welch) discusses the statistical analysis
of the random outputs produced by a simulation. The purpose of the
analysis is to produce an estimate of a performance measure and a mean-
ingful statement about the accuracy of the estimate. The estimation of
both transient and steady-state performance measures is considered.

Chapter 7 (‘‘Simulator Design and Programming’’ by Harry M. Marko-
witz) discusses aspects of the designing, coding, and debugging of simula-
tion programs. Simulation programming is illustrated first using
SIMSCRIPT, a language specifically designed for simulation program-
ming, and then a general-purpose programming language such as Fortran
or PL/I.

Chapter 8 (‘‘Extended Queueing Network Models’’ by Charles H.
Sauer and Edward A. MacNair) describes a set of powerful modeling
elements that can be used to define queueing networks that represent
complex system features. The resulting class of queueing networks is far
broader than the class of networks considered in Chapters 3 and 4, so
typically these networks must be simulated. A series of examples is pro-
vided illustrating the usefulness of these networks.

Each chapter is largely self-contained. However, Chapters 1 and 2
contain basic material that is useful for understanding the remaining chap-
ters, and the material on queueing networks in Chapter 3 is useful for
understanding Chapter 4.

All of the authors are members of the IBM Research Division, and all
except one are at the IBM Thomas J. Watson Research Center in
Yorktown Heights, New York. Gerald Shedler is at the IBM Research
Laboratory in San Jose, California. I am grateful to the Research Division
for the time and facilities provided for the preparation of the handbook. In
addition, financial support was provided by a grant from the IBM Group
Technical Assignment System Structure Technology program. I wish to
thank Hisashi Kobayashi for his participation in the conception of the
handbook. The inspiration for the handbook was provided by the success
of the IBM manual, Analysis of Some Queueing Models in Real-Time



Preface xii

Systems, Second Edition, GF20-0007-1, written by Philip H. Seaman and
published in 1971. That manual is no longer up-to-date. In particular, it
does not cover important results for queueing networks, and it does not
contain any material on simulation.

I wish to thank Marylou Dietrich for her careful typing of major por-
tions of the manuscript and for her cheerful cooperation with several
authors and their many revisions. The careful typing and other assistance
given by Betty A. Smalley during the early stages of preparation of the
handbook is also gratefully acknowledged.



Contents

Preface

1 Introduction to Performance Modeling

11
1.2
1.3
1.4

Stephen S. Lavenberg
The Role of Performance Modeling
Analysis of Performance Models
Simulation of Performance Models
Validation of Performance Models
References

2 Mathematical Prerequisites

21
2.2
23

Stephen S. Lavenberg
Probability and Random Variables
Poisson Process
Little’'s Formula and Its Applications
References

3 Analytical Results for Queueing Models

341
3.2
3.3
3.4
35
3.6
3.7
3.8
3.9

Stephen S. Lavenberg and Charles H. Sauer

Introduction

Performance Measures

Single Service Center Queueing Models

Introduction to Queueing Networks

Closed Product Form Queueing Networks

Open Product Form Queueing Networks

Mixed Product Form Queueing Networks

Further Results for Product Form Queueing Networks
Sources for Equations

References

vii

Xi

owonNn =

13
45
49
53

56

57

59
105
119
151
159
164
166
170




viii

4 Approximate Analysis of Queueing Networks

4.1
4.2
4.3
44

4.5

5.1
5.2
53
54

6.1
6.2
6.3
6.4

6.5

71
7.2
7.3
7.4
7.5
7.6
7.7

Stephen S. Lavenberg and Charles H. Sauer

Introduction

Mean Value Analysis Methods

Decomposition Methods for Networks without Product Form
Extended Service Time Method for Open Queueing Network
Model of Disk Systems

Other Methods for Open Networks

References

Generation Methods for Discrete Event Simulation

Gerald S. Shedler

Uniform Random Numbers
Nonuniform Random Numbers
Discussion

Sample Paths for Stochastic Processes
References

The Statistical Analysis of Simulation Results

Peter D. Welch

The Random Nature of Simulation Outputs

Estimating Transient Characteristics

Estimating Steady-State Characteristics

Achieving a Desired Accuracy: The Use of Pilot Experiments
and Sequential Procedures

Broader Statistical Questions

References

Simulator Design and Programming

Harry M. Markowitz

Introduction

Simulation Programming

Simulation Programming with a General Purpose Language
Debugging

Selection of a Type 2 Language

Simulator Design

Summary

References

Contents

173
175
187

208
217
220

223
229
247
252
264

268
280
288

320
326
328

331
333
348
358
360
360
364
364



Contents

8 Extended Queueing Network Models

8.1
8.2
8.3
8.4

Index

Charles H. Sauer and Edward A. MacNair

Introduction

Extended Queueing Network Elements
Examples

The Branching Erlang Distribution
References

367
369
375
390
393

395



Computer Performance Modeling Handbook

Introduction to Performance
Modeling

Stephen S. Lavenberg

The Role of Performance Modeling

Analysis of Performance Models

Simulation of Performance Models

Validation of Performance Models

References 1

RN
rwh =
cCwmN =

1.1 The Role of Performance Modeling

This handbook deals with the use of models in computer performance
evaluation and is intended to be a state-of-the-art reference manual for
performance modeling practitioners. While the evaluation of a computer
system may involve such factors as cost, availability, reliability, serviceability,
and security, we shall be concerned only with computer system performance,
where performance is measured by such quantities as throughput, utilization,
and response time. Performance is one of the key factors that must be taken
into account in the design, development, configuration, and tuning of a
computer system. Of course the overall system performance is affected by the
performance characteristics of the various subsystems and ultimately the
individual hardware and software components that constitute the system.
Hence, the design of new hardware and software components has system
performance implications that should not be ignored.

Once a particular computer system has been built and is running, the
performance of the system can be evaluated via measurements, using hardware
and/or software monitors, either in a user environment or under controlled

Copyright ©) 1983 by Academic Press, Inc.

All rights of reproduction in any form reserved.
ISBN 0-12-438720-9



2 Stephen S. Lavenberg

benchmark conditions. However, in order to evaluate the performance of a
system, subsystem, or component that cannot be measured, for example,
during the design and development phases, it is necessary either to make
performance predictions based on educated guesses or to use models as an aid
in making performance predictions. The interactions in present-day computer
systems are so complex that some form of modeling is necessary in order to be
able to predict and understand computer system performance.

Performance modeling is widely used, not only during design and
development, but also for configuration, tuning, and capacity planning
purposes. One of the principal benefits of performance modeling, in addition
to the quantitative predictions obtained, is the insight into the structure and
behavior of the system that is obtained in the course of developing a model.
This is particularly true during system design. The modeler must abstract the
essential features of the design and this process leads to increased understand-
ing and may result in the early discovery and correction of design flaws.

Many performance models can be mathematically analyzed to obtain such
performance measures as utilizations, throughputs, and average response
times. Such models are the subject of Chapters 3 and 4 of the handbook. Other
performance models are so complex that they must be simulated in order to
estimate performance measures. The simulation of performance models is the
subject of Chapters 5-8. It is assumed that the reader has a basic familiarity
with the complexities of present-day computer systems and a strong interest in
their performance. Mathematical prerequisites are covered in Chapter 2. The
remainder of this chapter contains introductory sections on the analysis and
simulation of performance models as well as a discussion of model valida-
tion.

1.2 Analysis of Performance Models

A computer system can be viewed as a collection of interconnected
hardware and software resources that provides service to a community of
users. Figure 1.1 shows in a simplified way some of the resources that may
comprise a computer system and the flow of work through the system. The
work to be performed consists of transaction processing for interactive users at
terminals and processing of a batch job stream. The hardware resources shown
are terminals, main memory, processors, channels, and 1/O devices. The
software resources shown are the terminal access method, the batch job entry
system, the scheduler (which swaps jobs and transactions in and out of main
memory), the dispatcher (which schedules work on the processors), and the I/O
supervisor (which schedules I/0 requests). Important functions of the software
are (1) to allow the hardware to be used in an efficient manner, e.g., by allowing
as much sharing of the hardware among the users as possible and (2) to



1. Introduction to Performance Modeling 3

schedule work on the hardware to provide quick response to users, particularly
to interactive users. In order to achieve efficient usage of the hardware, several
jobs (we use the term jobs to refer to transactions or batch jobs) can
simultaneously contend for such resources as main memory, processors, and
the I/O subsystem. The figure shows the queues that form for these resources as
a result of contention. The time spent waiting in these queues can have a

)8,
J TERMINAL

N<=

e ACCESS
. RESPONSES METHOD l
D TRANSACTIONS ~— — sciouen
(\ . MAIN
== : MEMORY
BATCH 10
JOBS ,
|
|
OUTPUT 0 ENTRY g S i i 4
SYSTEM
1o
In
DISPATCHER
PROCESSORS

1D
0
/él\/osupsnwson
S CHANNELS
... 1/0 DEVICES

Fig. 1.1 Computer system resources and work flow.

substantial impact on the performance of the system. Perhaps the major reason
models are needed in performance evaluation is to predict the effect of
contention for resources on performance. The kinds of performance models
that play the most important role in this regard are queueing models. The
resource requirements of jobs are specified as inputs to a queueing model, and
the model explicitly represents the queueing delays that occur. Examples of
resource requirements of jobs are the number of instructions to be executed on
a processor, the number of bits to be transmitted over a communication line,



4 Stephen S. Lavenberg

the amount of main memory required to store a program, the number of
instructions executed while holding a serially reusable piece of software, and
the length of a record to be read from a disk drive.

Queueing models began to be analyzed around the turn of the century in
connection with performance problems in telephone systems. They have since
given rise to a mathematical discipline known as queueing theory, a topic in
applied probability. Queueing theory employs a variety of mathematical
techniques to analyze queueing models. Many queueing models that represent
the contention for a single resource have been analyzed. Chapter 3 presents
analytical results for single resource queueing models that are useful in
predicting the performance of individual components, such as communication
lines, processors, and I/O devices.

QUEUE SYSTEM

TERMINALS

Fig. 1.2 Queueing model with system represented as a single resource.

One of the earliest successful applications of queueing models to problems
in computer performance occurred in the late 1960s during the development of
IBM’s 0S/360 Time Sharing Option (TSO). A simple queueing model was used
to predict the performance of TSO running a single partition in main memory
(see Lassettre and Scherr, 1972). This model is shown in Fig. 1.2 and described
in detail in Chapter 3. It is assumed in the model that there are a fixed number
of interactive users at terminals. A user thinks, enters input at the terminal,
waits for the computer to provide service in response to the input (during which
time the keyboard is locked), and receives output at the terminal. This process
continues indefinitely. The time it takes to receive output, to think, and to enter
input is specified as an input to the model and assumed to be a random variable
having a known distribution. The service provided by the system consists of
swapping a user’s program in and out of main memory and executing the
program. The time it takes to perform this service is also specified as an input to
the model and assumed to be a random variable having a known distribution.
Since there is only a single partition, service for one user cannot go on in
parallel with service for another user. Thus, the system is represented as a single
resource which can serve at most one user at any one time, and a queue is



1. Introduction to Performance Modeling 5

shown in front of this resource. If there were more than one partition so that
service for different users could go on in parallel, a different representation of
the system would be required. The model was primarily used to determine the
number of interactive users the system could support without exceeding a
specified average response time.

In a multiprogramming system several user programs simultaneously
reside in main memory so that the processing activity of one program can go on
in parallel with the 1/O activity of other programs. Furthermore, contention
can occur for the processing and 1/O resources. What is needed in such a
situation is a model that explicitly represents the contention for the multiple
resources that comprise a system. Starting in the late 1950s such queueing
models, which were developed to represent job shop systems, were analyzed in
the operations research literature. Analytical results were obtained for a fairly
broad class of models. Independent of this work, multiple resource queueing
models were used to predict computer performance as early as the mid-1960s.
However, it was not until the 1970s, when the results in the operations research
literature began to be applied, that the use of multiple resource queueing
models to predict computer performance became widespread. One such

— 1O

PROCESSOR

TERMINALS
I/0 DEVICES

Fig. 1.3 Queueing model with system represented as a network of resources.

multiple resource queueing model is shown in Fig. 1.3. In comparison with Fig.
1.2 the system is no longer represented as a single resource, but as a network of
resources, each resource having its own queue of requests. The application of
queueing networks to computer performance modeling has led to further
progress in developing and analyzing such models. For example, queueing
network models that explicitly represent different types of jobs, e.g., batch jobs
and TSO transactions, were analyzed. Chapter 3 presents analytical results for
a broad class of queueing network models and examples of their application.
These models are now widely used in performance evaluation. Several program
packages, some of which are commercially available, have been developed to
allow users to define and solve queueing network models of computer



6 Stephen S. Lavenberg

performance. For a survey of such program packages see Sauer and MacNair
(1979).
Although the class of queueing network models that have been exactly
analyzed has grown in recent years, many system features cannot be explicitly
Msaresented in such models. One important feature that is not represented in
the queueing network in Fig. 1.3 is contention for main memory space. The
model in Fig. 1.4 differs from that in Fig. 1.3 in that a queue for memory is

RELEASE

.

!
i

MEMORY
SPACE

ACQUIRE PROCESSOR *

TERMINALS
I/0 DEVICES

Fig. 1.4 Queucing model with contention for memory space represented.

shown. A job cannot get access to the processing and I/O resources of the
system until it has acquired a portion of memory. When the job completes its
processing and I/O services, it releases its portion of memory. Queueing
networks in which jobs must possess a limited resource (such as memory space)
in order to get service from another resource (such as a processor) have not
been exactly analyzed. Chapter 4 presents an important technique, based on
decomposing a model into a hierarchy of submodels, which can be used to
approximately analyze such networks. Other useful approximate analysis
techniques, e.g., for networks that explicitly represent processor dispatching
based on priorities, are discussed in Chapter 4.

1.3 Simulation of Performance Models

Many performance models are so complex that an exact mathematical
analysis is not possible and no reasonable approximate analysis techniques
exist. For example, this is usually the case with queueing network models that
explicitly represent complex resource scheduling algorithms. In such cases it is



1. Introduction to Performance Modeling 7

necessary to simulate the model. The kind of simulation we refer to is discrete
event simulation on a digital computer. Once a model has been formulated a
simulation program is written that keeps track of the evolution in time of the
model as determined by the occurrence of events at discrete time instants. An
event might be the arrival of a transaction or the completion of a service. The
simulation program is run in order to obtain estimates of performance
measures. Since most performance models incorporate some form of random-
ness in their inputs, e.g., to determine the times at which jobs arrive or to
determine the resource requirements of a job, the outputs produced by such
models, e.g., a resource utilization or an average response time, are also
random quantities. Thus, the simulation of a model that incorporates
randomness has statistical aspects that should not be ignored. Statistical
aspects of simulation are discussed in Chapters 5 and 6.

Chapter 5 describes methods for generation of the random inputs that drive
the simulation. Typically, the inputs to a model are independent samples from
specified distributions. Although simulation programming languages provide
some facilities for sampling from common distributions, the methods used do
not always represent the state-of-the-art in terms of computational efficiency
or appearance of randomness. Chapter 5 provides specific algorithms for
generation of independent samples from a number of standard distributions,
as well as a discussion of general methods for random number generation and
considerations in the use of random number streams. This material will help
the practitioner who has to program a procedure to generate samples from
a distribution. In addition, Chapter 5 gives some methods for generating
event times (e.g., times at which jobs arrive) as inputs to a model when
the times between events are not independent samples from the same
distribution.

Chapter 6 discusses the statistical analysis of the random outputs produced
by the simulation. This is an impartant aspect of simulation that, if ignored,
can result in erroneous conclusions being drawn from a model. The basic
problem is that an unknown deterministic quantity in the model is estimated by
a random quantity generated by the simulation. The purpose of the statistical
analysis is to produce a meaningful statement about the accuracy of the
estimate. Both the estimation of transient performance measures and the
estimation of steady-state performance measures are considered.

In a trace-driven simulation the inputs that drive the simulation, e.g., the
arrival times of jobs and their sequences of resources requirements, are not
random quantities obtained by sampling from distributions, but are de-
terministic quantities usually obtained from tracing the jobs on a running
system. Unless randomness is introduced elsewhere in the model a trace-
driven simulation will be purely deterministic. Trace-driven simulation is
discussed in review articles by Sherman and Browne (1973) and by Sherman
(1976).



8 Stephen S. Lavenberg

The design, coding, and debugging of a simulation program is often a very
time consuming task. Simulation has the advantage that it can be applied to
very detailed performance models, but this is also one of its major pitfalls.
Some simulation projects have failed because the model was so detailed that
the programming was not completed in a timely manner or because the model
required more detailed input data than was available. Thus, it is often good
practice to start with a fairly simple model and add detail if the simple model
proves to be inadequate. Although it is difficult to say in general how detailed a
performance model should be, the level of detail should be chosen based upon
the purpose for which the model is intended, the information available about
the system design, the kind of input data available, and the time and resources
available to code, debug, and run the simulation program. Chapter 7 discusses
aspects of the design, coding, and debugging of simulation programs. There
are many languages available for simulation programming, and Chapter 7
does not attempt to cover all of these. Instead it illustrates simulation
programming, first using SIMSCRIPT, a language specifically designed for
simulation programming, and then using a general purpose programming
language such as Fortran or PL/I.

GPSS is a widely used simulation language specifically designed to describe
the flow of jobs through a system. A model to be simulated using GPSS is
described by a block diagram. GPSS is discussed in the books by Fishman and
Kobayashi mentioned in the References. The book by Gordon (1975) can serve
as a GPSS user’s manual. The ease of constructing models using GPSS has led
to its wide use. However, the user should be aware that GPSS is considered to
have shortcomings with regard to random number generation (e.g., see Section
4.4.9 in the book by Fishman).

As previously discussed, queueing networks can be used to explicitly
represent the contention for resources that occurs in computer systems.
Chapter 8 describes a set of powerful modeling elements that can be used to
define queueing network models that represent many complex system features.
The elements have been developed to provide compact representations of
system features and to be flexible so that a variety of features can be
represented. Furthermore, the elements have pictorial representations so that
itis easy to draw a diagram of the network. The class of queueing networks that
can be defined by using these elements is far broader than the class of queueing
networks that can be mathematically analyzed. While it is possible to simulate
these networks using any of the simulation languages mentioned previously, a
program package called the RESearch Queueing package (RESQ) has been
developed at IBM Research and is specifically designed so that users can easily
define these kinds of networks. RESQ builds a simulation program based on
the model definition, then carries out the simulation of the model and produces
a statistical analysis of the simulation output. The RESQ package also
incorporates a program that computes performance measures for those



