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Preface

The main motivation for this book lies in the breadth of applications in which
a statistical model is used to represent small departures from, for example, a
Poisson process. Our approach uses information geometry to provide a com-
mon context but we need only rather elementary material from differential
geometry, information theory and mathematical statistics. Introductory sec-
tions serve together to help those interested from the applications side in
making use of our methods and results. We have available Mathematica note-
books to perform many of the computations for those who wish to pursue
their own calculations or developments.

Some 44 years ago, the second author first encountered, at about the same
time, differential geometry via relativity from Weyl’s book [209] during un-
dergraduate studies and information theory from Tribus [200, 201] via spatial
statistical processes while working on research projects at Wiggins Teape Re-
search and Development Ltd—cf. the Foreword in [196] and [170, 47, 58]. Hav-
ing started work there as a student laboratory assistant in 1959, this research
environment engendered a recognition of the importance of international col-
laboration, and a lifelong research interest in randomness and near-Poisson
statistical geometric processes, persisting at various rates through a career
mainly involved with global differential geometry. From correspondence in
the 1960s with Gabriel Kron [4, 124, 125] on his Diakoptics, and with Kazuo
Kondo who influenced the post-war Japanese schools of differential geometry
and supervised Shun-ichi Amari’s doctorate [6], it was clear that both had a
much wider remit than traditionally pursued elsewhere. Indeed, on moving to
Lancaster University in 1969, receipt of the latest RAAG Memoirs Volume /
1968 [121] provided one of Amari’s early articles on information geometry [7],
which subsequently led to his greatly influential 1985 Lecture Note volume [8]
and our 1987 Geometrization of Statistical Theory Workshop at Lancaster
University [10, 59].

Reported in this monograph is a body of results, and computer-algebraic
methods that seem to have quite general applicability to statistical models
admitting representation through parametric families of probability density
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VI Preface

functions. Some illustrations are given from a variety of contexts for geomet-
ric characterization of statistical states near to the three important standard
basic reference states: (Poisson) randomness, uniformity, independence. The
individual applications are somewhat heuristic models from various fields and
we incline more to terminology and notation from the applications rather than
from formal statistics. However, a common thread is a geometrical represen-
tation for statistical perturbations of the basic standard states, and hence
results gain qualitative stability. Moreover, the geometry is controlled by a
metric structure that owes its heritage through maximum likelihood to infor-
mation theory so the quantitative features—lengths of curves, geodesics, scalar
curvatures etc.—have some respectable authority. We see in the applications
simple models for galactic void distributions and galaxy clustering, amino
acid clustering along protein chains, cryptographic protection, stochastic fi-
bre networks, coupled geometric features in hydrology and quantum chaotic
behaviour. An ambition since the publication by Richard Dawkins of The Self-
ish Gene [51] has been to provide a suitable differential geometric framework
for dynamics of natural evolutionary processes, but it remains elusive. On the
other hand, in application to the statistics of amino acid spacing sequences
along protein chains, we describe in Chapter 7 a stable statistical qualitative
property that may have evolutionary significance. Namely, to widely varying
extents, all twenty amino acids exhibit greater clustering than expected from
Poisson processes. Chapter 11 considers eigenvalue spacings of infinite random
matrices and near-Poisson quantum chaotic processes.

The second author has benefited from collaboration (cf. [34]) with the
group headed by Andrew Doig of the Manchester Interdisciplinary Biocentre,
the University of Manchester, and has had long-standing collaborations with
groups headed by Bill Sampson of the School of Materials, the University of
Manchester (cf.eg. [73]) and Jacob Scharcanski of the Instituto de Informatica,
Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil (cf.eg. [76])
on stochastic modelling. We are pleased therefore to have co-authored with
these colleagues three chapters: titled respectively, Amino Acid Clustering,
Stochastic Fibre Networks, Stochastic Porous Media and Hydrology.

The original draft of the present monograph was prepared as notes for
short Workshops given by the second author at Centro de Investigaciones de
Matematica (CIMAT), Guanajuato, Mexico in May 2004 and also in the De-
partamento de Xeometra e Topoloxa, Facultade de Mateméticas, Universidade
de Santiago de Compostela, Spain in February 2005.

The authors have benefited at different times from discussions with many
people but we mention in particular Shun-ichi Amari, Peter Jupp, Patrick
Laycock, Hiroshi Matsuzoe, T. Subba Rao and anonymous referees. However,
any overstatements in this monograph will indicate that good advice may
have been missed or ignored, but actual errors are due to the authors alone.

Khadiga Arwini, Department of Mathematics, Al-Fateh University, Libya
Kit Dodson, School of Mathematics, the University of Manchester, England
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1

Mathematical Statistics
and Information Theory

There are many easily found good books on probability theor)} and math-
ematical statistics (eg [84, 85, 87, 117, 120, 122, 196]), stochastic processes
(eg [31, 161]) and information theory (eg [175, 176]); here we just outline
some topics to help make the sequel more self contained. For those who have
access to the computer algebra package Mathematica [215], the approach to
mathematical statistics and accompanying software in Rose and Smith [177]
will be particularly helpful.

The word stochastic comes from the Greek stochastikos, meaning skillful
in aiming and stochazesthai to aim at or guess at, and stochos means target or
aim. In our context, stochastic colloquially means involving chance variations
around some event—rather like the variation in positions of strikes aimed at
a target. In its turn, the later word statistics comes through eighteenth cen-
tury German from the Latin root status meaning state; originally it meant
the study of political facts and figures. The noun random was used in the
sixteenth century to mean a haphazard course, from the Germanic randir to
run, and as an adjective to mean without a definite aim, rule or method, the
opposite of purposive. From the middle of the last century, the concept of a
random variable has been used to describe a variable that is a function of the
result of a well-defined statistical experiment in which each possible outcome
has a definite probability of occurrence. The organization of probabilities of
outcomes is achieved by means of a probability function for discrete random
variables and by means of a probability density function for continuous ran-
dom variables. The result of throwing two fair dice and summing what they
show is a discrete random variable.

Mainly, we are concerned with continuous random variables (here mea-
surable functions defined on some R™) with smoothly differentiable probabil-
ity density measure functions, but we do need also to mention the Poisson
distribution for the discrete case. However, since the Poisson is a limiting
approximation to the Binomial distribution which arises from the Bernoulli
distribution (which everyone encountered in school!) we mention also those
examples.

K. Arwini, C.T.J. Dodson, Information Geometry. 1
Lecture Notes in Mathematics 1953,
(© Springer-Verlag Berlin Heidelberg 2008



2 1 Mathematical Statistics and Information Theory

1.1 Probability Functions for Discrete Variables

For discrete random variables we take the domain set to be NU {0}. We may
view a probability function as a subadditive measure function of unit weight
on NU {0}

p : NU{0} — [0,1) (nonnegativity) (1.1)
o0
Zp(k) =1  (unit weight) (1.2)
p(AUB) < p(A) + p(B), VA, B C NU{0}, (subadditivity) (1.3)
with equality <= AN B = (.

Formally, we have a discrete measure space of total measure 1 w1th o-algebra
the power set and measure function induced by p

sub(NU{0}) — [0,1) : A > p(k)
keA

and as we have anticipated above, we usually abbreviate >, . , p(k) = p(A).
We have the following expected values of the random variable and its
square

Ek) =k =) kp(k) (1.4)
k=0

E(k*) =k = K*p(k). (1.5)
k=0

Formally, statisticians are careful to distinguish between a property of the
whole population—such as these expected values—and the observed values
of samples from the population. In practical applications it is quite common
to use the bar notation for expectations and we shall be clear when we are
handling sample quantities. With slight but common abuse of notation, we call

k the mean, k2 — (k)? the variance, oy = +1/k2 — (k)2 the standard deviation

and oy /k the coefficient of variation, respectively, of the random variable k.
The variance is the square of the standard deviation.

The moment generating function ¥(t) = £(e!X), t € R of a distribution
generates the 7" moment as the value of the 7" derivative of ¥ evaluated at
t = 0. Hence, in particular, the mean and variance are given by:

E(X) =¥ (0) (1.6)
Var(X) =" (0) — (¥'(0))?, (1.7)

which can provide an easier method for their computation in some cases.



1.1 Probability Functions for Discrete Variables 3
1.1.1 Bernoulli Distribution

It is said that a random variable X has a Bernoulli distribution with parameter
p (0 < p<1)if X can take only the values 0 and 1 and the probabilities are

PlX =1)=p (1.8)
P(X=0)=1-p (1.9)

Then the probability function of X can be written as follows:

p*(1—p)l—=ifzx=0,1

f(@lp) = {0 otherwise (110)

If X has a Bernoulli distribution with parameter p, then we can find its
expectation or mean value £(X) and variance Var(X) as follows.

E(X)=1-p+0-(1—-p)=p (1.11)
Var(X) = £(X*) — (£(X))* =p—p° (1.12)

The moment generating function of X is the expectation of e
(t) = E(?X) = pel + ¢ (1.13)

which is finite for all real ¢.

1.1.2 Binomial Distribution

If n random variables X1, X, ..., X,, are independently identically distrib-
uted, and each has a Bernoulli distribution with parameter p, then it is said
that the variables X, X»,..., X,, form n Bernoulli trials with parameter p.

If the random variables X1, X5, ..., X,, form n Bernoulli trials with para-
meter p and if X = X; + X5 + ...+ X,,, then X has a binomial distribution
with parameters n and p.

The binomial distribution is of fundamental importance in probability and
statistics because of the following result for any experiment which can have
outcome only either success or failure. The experiment is performed n times
independently and the probability of the success of any given performance is p.
If X denotes the total number of successes in the n performances, then X has
a binomial distribution with parameters n and p. The probability function of
X is:

P(X =r)= P> X, =1) = (f) (1 - pn (1.14)
=1

where r =0,1,2,...,n.
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We write

n T . n—r 3 L
el = (T)p (1—p) ifr=0,1,2, ..., n (1.15)

0 otherwise

In this distribution n must be a positive integer and p must lie in the interval
0 <p <1 If X is represented by the sum of n Bernoulli trials, then it is easy
to get its expectation, variance and moment generating function by using the
properties of sums of independent random variables—cf. §1.3.

E(X) = Zg(xi) =np (1.16)

Var(X) = ZVar(Xi) =np(l —p) : (1.17)
=1

w(t) = E() = [] €)= (e’ + )™ (1.18)

1.1.3 Poisson Distribution

The Poisson distribution is widely discussed in the statistical literature; one
monograph devoted to it and its applications is Haight [102].
Take t, 7 € (0, 00)

k
p: NU{0} —[0,1): ks (;) %e“t/T (1.19)
k=t/T (1.20)
or =1t/7. (1.21)

This probability function is used to model the number £k of events in a
region of measure ¢ when the mean number of events per unit region is 7 and
the probability of an event occurring in a region depends only on the measure
of the region, not its shape or location. Colloquially, in applications it is very
common to encounter the usage of ‘random’ to mean the specific case of a
Poisson process; formally in statistics the term random has a more general
meaning: probabilistic, that is dependent on random variables. Figure 1.1
depicts a simulation of a ‘random’ array of 2000 line segments in a plane; the
centres of the lines follow a Poisson process and the orientations of the lines
follow a uniform distribution, cf. §1.2.1. So, in an intuitive sense, this is the
result of the least choice, or maximum uncertainty, in the disposition of these
line segments: the centre of each line segment is equally likely to fall in every
region of given area and its angle of axis orientation is equally likely to fall in
every interval of angles of fixed size. This kind of situation is representative
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Fig. 1.1. Simulation of a random array of 2000 line segments in a plane; the centres
of the lines follow a Poisson process and the orientations of the lines follow a uniform
distribution. The grey tones correspond to order of deposition.

of common usage of the term ‘random process’ to mean subordinate to a
Poisson process. A ‘non-random’ processes departs from Poisson by having
constraints on the probabilities of placing of events or objects, typically as a
result of external influence or of interactions among events or objects.

Importantly, the Poisson distribution can give a good approximation to
the binomial distribution when n is large and p is close to 0. This is easy to
see by making the correspondences:

e P — (1—(n—r)p) (1.22)
n!/(n—7r)! — n". (1.23)

Much of this monograph is concerned with the representation and classifi-
cation of deviations from processes subordinate to a Poisson random variable,
for example for a line process via the distribution of inter-event (nearest neigh-
bour, or inter-incident) spacings. Such processes arise in statistics under the
term renewal process [150].

We shall see in Chapter 9 that, for physical realisations of stochastic fibre
networks, typical deviations from Poisson behaviour arise when the centres of
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the fibres tend to cluster, Figure 9.1, or when the orientations of their axes
have preferential directions, Figure 9.15. Radiographs of real stochastic fibre
networks are shown in Figure 9.3 from Oba [156]; the top network consists of
fibres deposited approximately according to a Poisson planar process whereas
in the lower networks the fibres have tended to cluster to differing extents.

1.2 Probability Density Functions for Continuous
Variables

We are usually concerned with the case of continuous random variables defined
on some {2 C R™. For our present purposes we may view a probability density
function (pdf) on £2 C R™ as a subadditive measure function of unit weight,
namely, a nonnegative map on {2

f: 2—[0,00) (nonnegativity) (1.24)
/f f(2 (unit weight) (1.25)

f(AUB) < f(A)+ f(B), VA, B C {2, (subadditivity)  (1.26)
with equality <= AN B = (.

Formally, we have a measure space of total measure 1 with o-algebra typically
the Borel sets or the power set and the measure function induced by f

sub(§2) — [0,1] : A — / f = integral of f over A
A

and as we have anticipated above, we usually abbreviate [, f = f(A). Given
an integrable (ie measurable in the o-algebra) function u : 2 — R, the
expectation or mean value of u is defined to be

E(u) :ﬂ:/nuf.

We say that f is the joint pdf for the random variables xy,za,..., T, be-
ing the coordinates of points in {2, or that these random variables have the
joint probability distribution f. If x is one of these random variables, and in
particular for the important case of a single random variable x, we have the
following

fzz];mf (1.27)

F:/#, (1.28)
82
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Again with slight abuse of notation, we call T the mean and the variance is
the mean square deviation

02 =(x—7)2 =22 — (%)%

Its square root is the standard deviation o, = +4/22 — (Z)2 and the ratio
0 /7 is the coefficient of variation, of the random variable z. Some inequalities
for the probability of a random variable exceeding a given value are worth
mentioning.

Markov’s Inequality: If  is a nonnegative random variable with probabil-
ity density function f then for all a > 0, the probability that z > a is

[7-

Chebyshev’s Inequality: If z is a random variable having probability den-
sity function f with zero mean and finite variance o2, then for all a > 0,
the probability that x > a is

T T (1.30)
5 ~ o2 +4a? ’

Bienaymé-Chebyshev’s Inequality: If = is a random variable having
probability density function f and u is a nonnegative non-decreasing
function on (0, 00), then for all a > 0 the probability that |z| > a is

(1.29)

2|8

u

1=/ 7= u(a)

—a

. (1.31)

The cumulative distribution function (cdf) of a nonnegative random variable z
with probability density function f is the function defined by
xT

F:[0,00) = [0,1] : 2 — f(t)dt. (1.32)
0

It is easily seen that if we wish to change from random variable x with
density function f to a new random variable £ when z is given as an invertible
function of &, then the probability density function for £ is represented by

dx
dg

If independent real random variables x and y have probability density func-
tions f, g respectively, then the probability density function h of their sum
z =x + y is given by

9(&) = f(=(£)) : (1.33)

h(z):/_ | f(x)g(z —x)dx (1.34)
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and the probability density function p of their product r = xy is given by

p(r) :/—Z f(m)g(g) ‘—ild:r (1.35)

Usually, a probability density function depends on a set of parameters,
0y,6,...,60, and we say that we have an n-dimensional family. Then the
corresponding change of variables formula involves the n x n Jacobian deter-
minant for the multiple integrals, so generalizing (1.33).

1.2.1 Uniform Distribution

This is the simplest continuous distribution, with constant probability density
function for a bounded random variable:

1
u : [a,b] — [0,00) : x (1.36)
b—a
b

g= 2 (1.37)

2

b
P k. (1.38)

2V/3

The probability of an event occurring in an interval [a, 8] € [a,b] is simply
proportional to the length of the interval:

P(T € [(lf,ﬂ]) =

08—«
b—a’
1.2.2 Exponential Distribution

Take A € R*; this is called the parameter of the exponential probability
density function

f :[0,00) = [0,00) : [a,b] — » %e_x/)‘ (1.39)
=X (1.40)
gs = A (1.41)

The parameter space of the exponential distribution is R, so exponential
distributions form a l-parameter family. In the sequel we shall see that quite
generally we may provide a Riemannian structure to the parameter space of
a family of distributions. Sometimes we call a family of pdfs a parametric
statistical model.

Observe that, in the Poisson probability function (1.19) for events on the
real line, the probability of zero zero events in an interval ¢ is

p(0) =e "7



