Z80 MACHINE

kN TOOIILL
D DAVID BARROW

8064213

i ll il

E8054213

Z 80 Machine Code
for Humans

Alan Tootill and David Barrow

GRANADA

London Toronto Sydney New York

EhS3208

Granada Technical Books
Granada Publishing Ltd.,
8 Grafton Street, London WI1X 3LA

First published in Great Britain by Granada Publishing 1983
Reprinted 1984

Copyright © Alan Tootill and David Barrow 1983

British Library Cataloguing in Publication Data
Tootill, Alan
780 machine code for humans.
1. Sinclair ZX80 (Computer) — Programming
I. Title II. Barrow, David
001.64°25 QA76.8.5625

ISBN 0-246-12031-2

Typeset by Columns of Reading
Printed and bound in Great Britain by Mackays of Chatham, Kent

All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted in

any form or by any means, electronic, mechanical, photocopying,
recording or otherwise, without the prior permission of the
publishers.

Preface

We do not pretend that machine or assembler language coding is
better than coding in some high-level language. It all depends on
what you want to do and the resources you have at the time,
particularly the time, for doing it.

If you want something up and running within a few days, and
know and practise a high-level language suitable for solving your
problem, and if you also have the facilities needed to make good
use of that language, then use it. Machine code will only match it
for speed of getting the job done if you have already prepared,
tested and practised using machine code routines that can be put
together as building blocks to form the bulk of your application.
If, on the other hand, you need to fit your program into a small
area of memory, or need extreme speed of execution, precise
timing or control for such applications as animated graphics or
monitoring critical processes, then you have little choice but to
use machine code. Vague statements are often made about the
relative speeds of machine code and BASIC. In Appendix C we
give one concrete example.

But personal computing is about more than getting applications
programmed quickly and easily. It is partly about the pleasure and
satisfaction to be gained from exercising your mind. Hard mental
effort, like physical or spiritual effort, has its rewards.

The satisfaction that comes from working with the instruction
set that actually controls the computer, rather than through some-
body else’s translation or interpretation, is something that must be
experienced to be understood. Working with the processor’s own
instructions is an obvious necessity to those who are not content
with just knowing what the computer can do but also feel impelled
to find out how it does it. It is an exercise that will dispel any
misleading notions of the computer as some spooky ‘black box’
which is capable of understanding only highly complex languages

Preface vii

and concepts. The machine will be revealed as it really is, capable
of performing a few simple switching operations superbly well.

Programming, and machine code programming in particular, is a
good recreation that takes you away from the mindless mouthings
of the manipulators and image makers into a sphere where only
what is true will work. That is probably why its practice will put
you in company with some fine people.

Several people have told us that they cannot understand machine
code even though we know they are quite capable of it. We have
also seen how programmers like to check on how to do things by
looking at code that is already working, rather than by digging
information out of the suppliers’ documentation. This book has
been written primarily to help the many who have not got round
to understanding machine code, by presenting enough code,
doing interesting things, to show how it works. The book does
not set out to explain, systematically, each instruction. Other
books, not least the Zilog or Mostek programming manuals, do
that. We hope that experienced coders will find the routines
stimulating as well and that the detailed explanations, though not
essential for them, will save them some time in understanding the
routines.

Looking at other people’s code can be mental torture for the
novice if it is not fully explained. We have tried, therefore, to
explain not only what the code is doing, line by line, but also to
tell you in advance what it is going to do, so that you approach it
knowing what to expect.

When following the code, you will probably think of different
ways of doing things. There are so many possible ways of pro-
gramming any function in machine code that most code can be
improved if somebody spends enough time on it. So, if you find
you can do any of these routines better than we have done, we
will not mind at all. Write and tell us or, better still, write your
own book and tell everybody!

V/e suggest that the novice first runs a routine to see what it
does, then tries using it with other data and ideas of his or her
own where suitable. He should then examine the code to see how
the routine works and, finally, try to work out better code for
doing the same thing. The secret of understanding machine code
lies in not trying to take in too much at a time and in going back,
after a break, as many times as necessary, to anything not fully
understood.

It is well worth the effort to make any machine coding you do

viii Z80 Machine Code for Humans

clear and visible to others, so that they, and you when you have
moved on to other things, can see how the code works too. That is
what we are trying to do in this book. Code that is visible can be
improved, changed to serve other purposes and, best of all, shared
with other users. This sharing of clearly documented effort should
be applied to all aspects of computer work, otherwise the com-
puter’s potential to enhance man’s effectiveness will not be fully
realised. How this can be brought about, whilst it is so clearly in
conflict with established commercial practice, is something that
needs working on. Many personal computer owners are already
showing the way!

We would like to thank Richard Miles of Granada Publishing for
masterminding the production of this book, the authors’ families
who did not escape the traumas of its writing and the contributors
to our machine code series PCW SUB SET in the British magazine,
Personal Computer World, whose enthusiasm for machine code
programming encouraged us to make this effort.

Most of the material in this book is new but two of the routines
have appeared before in Personal Computer World. These are the
delay routines, DL1S and URDZ in Chapter 4. They are included
here with kind permission of PCW.

Alan Tootill
David Barrow

8064213

Contents
Preface vi
1. Getting Started 1
2. Organising for Character Display 10
3. Filling the Screen 21
4. Delays 28
5. Printing Text
6. Matching Input
7. Prompting
8. Lines in Pixel Graphics
9. Utility Arithmetic and Conversion
10. A BCD Arithmetic Suite
11. Communicating
12. Relocatable Code 98
13. Changing Shapes 105
14. Wrinkles 119
Appendix A: Z80 Instruction Set 125
Appendix B: Binary and Hexadecimal Number Systems 139
Appendix C: A Comparison of BASIC and Z80 Machine Code 143
Appendix D : ASCII Character Codes 146
Index of Fully Documented Routines 148

Index 150

Chapter One
Getting Started

When a personal computer is switched on, it automatically carries
out a cycle of fetching and executing instructions, from a set that
its processor has been designed to handle. These instructions are in
code and the Z80 codes are given in Appendix A. Any other form
of instruction has to be converted into equivalent machine code
instructions for execution, either in advance by a program called a
compiler, or whilst running by a program called an interpreter.
There is, in fact, another program, called an assembler, which
helps to produce machine code by converting more easily remem-
bered mnemonics of the machine instructions into the actual
codes. In Appendix A, and throughout the book, we give these
mnemonics alongside the machine code.

Computer codes, representing both instructions and data, are
binary numbers, expressed for convenience in Zexadecimal nota-
tion. If you are not familiar with these number systems, or the
meaning of BCD (binary coded decimal) and the 2’s complement
of numbers, read Appendix B for a brief account. Other books on
mathematics or computer technology will deal more fully with
them but they are simple enough and you will soon become
accustomed to using them.

It is possible, but not very interesting, to read machine code
without trying it out. Since the machine code in this book is for
humans (and we doubt whether reading machine code without
seeing it work is!) it is assumed that you are working through the
book using a microcomputer with a Z80 processor. There are
certain facts you need to know or find out about your particular
computer, before you can use machine code on it.

2 Zs0 Mach&&'c% &:&%s

Your computer

You must know what RAM (memory that you can write into and
read from) is available to you and the addresses at which it is
located. In machine code you put everything where it should go
and keep track of where it is. It follows from this that you will
want to see what is contained in certain RAM locations and be
able to change the contents at will.

You will have to know how to cause your computer to jump to
execute code at the address of the memory location you have put
it in. It is also useful to know the address to jump to after your
code has finished, to produce an orderly return to your computer
system and to allow it to await your next command. We have
ended code in this book with a HALT (machine code 76H) because
every Z80 processor has one. A return to await your next monitor,
BASIC or other system command is preferable.

A monitor is a program that accepts commands to enable you
to do all the things just mentioned and, probably, more. Typically,
as well as allowirg you to see and alter memory in hexadecimal,
execute maching code programs and return for its next command,
a monitor will stop a program at an address you specify and dis-
play all registers. It will also execute one instruction at a time
displaying all registers in between, perform simple hexadecimal
arithmetic, copy from one area of memory to another, copy
memory to and from tape or disk and send data to and from an
input/output port. A monitor will also have many other useful
subroutines you could use in your own machine code programs.

Experienced BASIC programmers who do not have a custom-
built monitor will probably find that they can do in BASIC all
that is needed to enter and execute machine code programs.
Another book in this series, Introducing Spectrum Machine Code
by lan Sinclair, approaches machine code through Spectrum
BASIC and might well be useful to users of other BASICs who
want to adopt the same approach.

For use with some of the code in this book, you will need a
routine — as specified in Chapter 4 — to scan the keyboard for an
input character. Since such a routine must depend on the hard-
ware design of your computer, we cannot supply anything that
would be of general use. Such a routine must be there somewhere,
in monitor, BASIC interpreter or systems software, and you need
to know the address at which it can be called.

You will need to know the codes for the characters that can be

8 O ﬁ 4 2 &3’7!] Started 3

displayed in your system. Any character codes in the routines in
this book are from the standard ASCII character set, used by
most, but not all, personal computers. Most personal computers
have a memory-mapped display, where a code in a location in
RAM causes the character it represents to be displayed in a related
screen character position. The display routines in this book are
written for this system, more fully described in Chapter 5. To use
them, you will have to know the start address of the display
memory, the number of characters displayed on a line and the line
difference (i.e. the difference in the memory addresses of the first
character positions of two adjacent lines), since this is not the
same in all systems as the number of characters in a line. If your
computer uses some other display system, the display routines in
this book will have to be adapted to suit and you will need to
know how to do thls

branch to, and call subroutines at, labelled instrutions, calcﬁléﬁihg
the addresses for you. If you then insert or delete i'nstructlons 4he
source code (mnemonics) can be re-assembled, taklﬁg care of all
necessary re-addressing, without your having to decﬁé’*'whmhw
addresses are affected by the changes. An assembler also allows
you to decide, each time it is used, where the assembled machine
code is to go in memory.

MAIN ALTERNATE
REGISTERS REGISTERS

A F A F

B c B ¢
o E 0’ £’
W L] B TW [T
SPECIAL PURPOSE 1-BIT
REGISTERS FLIP-FLOPS

R
R

1Y N

i
e]

Fig. 1.1. Z80 register set.

4 Z80 Machine Code for Humans

The Z80 registers

The Z80 processor has a number of internal registers, as shown in
Figure 1.1, into and out of which the machine code programmer

can load data.

bit 7 6 S5 4 3 2 1 0

S| 2| -|H]|-|PIVIN]C

Fig. 1.2. F register (flags).

The A register, or accumulator, holds the result of 8-bit arith-
metic or logical operations whilst in the F register, or flags, six of
the eight bits, as shown in Figure 1.2, are used to indicate condi-
tions arising from 8- or 16-bit operations. The S, or sign flag, has
the state of the most significant bit of the result. The Z, or zero
flag, is set to 1 when the result is zero. The H, or Aalf carry flag, is
set to 1 when an add or subtract produces a carry into or a borrow
from bit 4 of the accumulator. It is used by the DAA (decimal
adjust) instruction in binary coded decimal arithmetic. Parity and
overflow share the same P/V flag. In logical operations even parity
is shown by 1 and odd parity by 0. In arithmetic operations the
flag is set to 1 if the result produced overflow. The N, or add/
subtract flag, is set to 1 if the previous operation was a subtract.
It is used by the DAA (decimal adjust) instruction in binary coded
decimal arithmetic. The C, or carry flag, is set when an add
instruction generates a carry or a subtract instruction generates a
borrow. The DAA instruction will also set the carry when an
adjustment has been made. As you work through the book, you
will come across instructions that act on the state of these flags.

B, C, D, E, H and L are 8-bit general purpose registers that can
also be used in pairs — BC, DE and HL as 16-bit registers. These,
with the A and F registers, are duplicated in a set of alternate
registers. The main and alternate general purpose registers can be
switched with a single instruction, as can the main and alternate
A and F registers. Because they can be exchanged so quickly,
alternate registers are sometimes reserved for use in interrupt
service routines, where a swift response is crucial.

The I, 8-bit interrupt vector, is used in one of the interrupt
methods, as discussed in Chapter 11. The R, refresh register, is a
7-bit counter that can be used in conjunction with the hardware to

Getting Started 5

maintain automatically the contents of a commonly used type of
memory, dynamic RAM. It is not normally used by the program-
mer, although it can be accessed for testing purposes.

IX and IY are 16-bit index registers, which are used to hold a
16-bit base address for accessing data stored in tables. You will see
this use of the IY register in the next chapter.

The SP (stack pointer) register holds a 16-bit address of the
current position in an area of RAM, used as a temporary store. It
is discussed below. Another 16-bit register, the PC (program
counter) holds the address of the current instruction being fetched
from memory. It is automatically increased to point to the next
instruction, as soon as its contents have been transferred to the
address lines. Jump, call, return and restart instructions, requiring
a jump out of the program sequence, override the address of the
next instruction. The IFF flip flops enable the processor to keep
track of interrupts and are discussed in Chapter 11.

Addressing

Most Z80 instructions operate on information stored in the
registers, memory or ports and the Z80 instructions provide
various methods of addressing this information.

Some instructions indicate in themselves where the information
is and this is known as implied addressing. They alter the state of
the accumulator, the carry flag, the IFF flip flops or perform
block moves. In register addressing, the information is in an 8-bit
or 16-bit register.

Sometimes the information — in either one or two bytes — is in
the program, immediately following the operation code. This is
known as immediate addressing. When the information is a 16-bit
number or address, the low order byte, contrary to mathematical
practice, is placed first in the machine code, before the high order
byte. The machine code of instruction LD BC,0BOCH is 01 OC OB.
This is to suit the Zilog electronics. In our machine code, because
we do not know the addresses in your system at which you will
locate these routines, we show calls to them as CD lo hi. If you are
storing 16-bit numbers or addresses to be picked up one byte at a
time, there is no reason why they should not be stored in the
normal order, with the most significant byte before the least
significant one. We do this with addresses in key area RAM des-
cribed in the next chapter.

6 Z80 Machine Code for Humans

The Z80 has eight locations in page zero memory, O0H, 08H,
10H, 18H, 20H, 28H, 30H and 38H, to which special call instruc-
tions, the single byte RST (restart), can direct the program to
perform a subroutine. These locations are usually reserved for
most frequently used, or interrupt service, subroutines. The use of
these restart instructions is known as modified zero page
addressing.

In relative addressing a jump operation code is followed by a
signed, 2’s complement, 8-bit displacement. This displacement is
added to the program counter after it has been incremented to
point to the next instruction, so that the jump is always relative
to the address of the byte after the displacement. A close look at
some displacements is taken in Chapter 2, following the routine
HLARR. The displacement can only be in the range minus 128 to
plus 127.

Extended addressing refers to accessing information at any
16-bit address, which, in the source code or mnemonics, is shown
in brackets. LD A,(OF60H) will put into the accumulator the
contents of the byte at location OF60H.

Another way of doing this is by register indirect addressing,
where a 16-bit register pair holds the address of the information to
be accessed. LD A,(HL) will put into the accumulator the contents
of the byte at the address in HL.

The two special purpose registers IX and 1Y are used in indexed
addressing. This differs from register indirect addressing in that the
two-byte operation code is followed by a displacement byte,
which is added to the address in the register to form the address of
the information to be accessed.

The Z80 has bit addressing; instructions that allow you to
operate on a single bit, which can be set, reset or tested.

Finally, there is stack pointer addressing, where the address of
the memory locations to be operated on is in the stack pointer.
The two instructions which use this addressing method are PUSH
and POP.

The stack

The stack is a stack of bytes, wherever the program places it in
RAM, into which certain Z80 instructions place and remove data
— in two-byte units — on a last in, first out basis. The machine
code programmer has to arrange for there to be enough stack

Getting Started 7

PROGRAM
320F (last instruction) SUBROUTINE
3210/ F7 |RST 30H
3211 obp |Pop 11X 0030 E3 |EX (SP)HL
3212 EN 0031| ES |PUSH HL
3213 (next instruction) 0032 C9 RET
Affer. . HL FE DC 7650 00
(last instruction) 1x BA9S 7651 00
SP 7654 7652 00
PC 3210 7653 00
RST 30H HL FE DC 7650 00
IX BA9S 7651 00
SP 7652 7652 11
PC 0030 7653| 32
EX (SP),HL HL 32 11 2850 55
IX BA9S 7651 00
SP 7652 7652 DC
PC 0031 7653 | FE
PUSH HL HL 32 11 7650 11
X BA9S 7651 32
sp 7650 7652 DC
PC 0032 7653 FE
RET HLY 312 11 7650 [11
X BA98 7651 32
SP 7652 7652 | DC
PC 3211 7653| FE
POP IX HL | _ 8% " 7650 [11
IX FEDC 7651 32
SP 7654 7652 DC
PC 3213 7653 FE

Fig. 1.3. Program counter (PC), stack pointer (SP) and stack changes.

8 Z80 Machine Code for Humans

memory to hold the amount of data placed onto and not removed
from the stack at any one time.

When your Z80 microcomputer is switched on and the cycle of
fetching and executing instructions begins, either a monitor or
BASIC interpreter will set the stack pointer pointing to an area of
RAM reserved for that program’s stack. That area of RAM might,
or might not, be enough for your machine code program’s stack.
If it is not, or you do not know how much RAM has been reserved,
you can load the stack pointer, via either the HL, IX or 1Y register,
with any address you choose.

The stack pointer, after being given its address by the program,
is automatically adjusted to keep track of the currently available
stack location, by the instructions that use the stack. When a unit
of information is placed, or pushed, onto the stack, the stack
pointer is decreased by 1, the high order byte of the data is stored
at the address in the stack pointer, the stack pointer is decreased
by 1 again and the low order byte is stored at the new address in
the stack pointer. When a unit of information is popped from the
stack, the low order byte at the address in the stack pointer is
recovered, the stack pointer is increased by 1, the high order byte
at the new address in the stack pointer is recovered and the stack
pointer is increased by 1 again. PUSH and POP instructions move
data between 16-bit registers and the stack, as in Figure 1.3.

Call and restart instructions stack the contents of the program
counter, after it has been increased to point to the next instruc-
tion and before it has been overriden by the subroutine address to
which the program next goes, as shown in Figure 1.3. Any of the
return instructions put the address at the current stack location
into the program counter, to cause program execution from the
instruction following the call or restart. This allows for unlimited
nesting of subroutines within subroutines, provided you reserve
enough stack RAM for your program.

Documentation of routines in this book

Our code is preceded by standard information helpful to its use.
The length is given in bytes and the stack use is the number of
bytes used by the routine and any routine it calls but excluding
the call to the routine itself. Each line of code consists of a label
field (occupied occasionally where necessary), the Zilog instruc-
tion mnemonic, comment preceded by a semi-colon, and then the

Getting Started 9

machine code instruction (from one to four bytes long) in
hexadecimal.

Chapter Two

Organising for Character
Display

Programming a major application in machine code is a very dif-
ferent matter from writing a single routine to perform some
limited, easily defined task. In the latter case, all the information
needed can often be passed to and from the routine in registers, of
which the Z80 has a good supply. But when a lot of these routines
are being used together in a larger work, saving on the stack and
accessing these registers as needed can become a major brain
bender. It is less efficient for the processor perhaps but better for
your peace of mind, to reserve certain areas of memory (RAM)
where the information most commonly needed will always be
found by whatever routine needs it.

There is another advantage in having these reserved memory
areas. They offer more scope for writing routines that can be made
to do different things simply by altering the information in
memory, rather than by altering any code calling the routine. This
should all become clear as you read on.

We set about here organising some RAM to hold information we
will need in a system to ask for, receive and check data supplied
by the personal computer user through the keyboard. The IY
register will be set to point to the key area of the RAM, which will
look like this:

IY+

00 hi 3 the home The current display area
01 lo address.

02 col N (the number of columns).

03 row N (the number of rows).

04 col B diff (byte difference between columns).

05 row B diff (byte difference between rows).
06 col PP (print position).

