o U
BASIC

John GG. Kemeny
Thomas E. Kurtz

Creators of BASIC

"T'he History, Corruption, and Future
of the T anotiaoe



BACK TO BASIC

The Histbry, Corruption,
and Future of the Language

John G. Kemeny
and
Thomas E. Kurtz

A
ve

Addison-Wesley Publishing Company, Inc.
Reading, Massachusetts - Menlo Park, California
Don Mills, Ontario - Wokingham, England
\msterdam - Sydney - Singapore - Tokyo - Mexico City
Bogota - Santiago - San Juan



True BASIC is a trademark of True BASIC, Inc., Hanover, New Hampshire.

Library of Congress Cataloging in Publication Data

Kemeny, John G.
Back to BASIC

Includes index.

1. Basic (Computer program language) I. Kurtz,
Thomas E. II. Title. III. Title: Back to B.A.S.I.C.
QA76.73.B3K44 1985 001.64'24 84-24546
ISBN 0-201-13433-0

Copyright © 1985 by Addison-Wesley Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by

any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of the Publisher.
Printed in the United States of America. Published simultaneously
in Canada.

Set in 10 pt Century Schoolbook by Ampersand Publisher Services, Inc.,
Rutland, VT

First printing April 1985
ABCDEFGHIJ-HA-898765



BACK TO BASIC

The History, Corruption,
and Future of the Language



INTRODUCTION

In 1963 Dartmouth College made a decision to enable all students to
become computer-literate. To implement that decision required sweep-
ing new ways to bring computing and students together. Two of those
ways stand out. The first was that we needed a totally different way to
distribute the computer resource; batch processing simply would not
work. The second was that we needed to develop a new language, one
that was far easier to learn and use for large numbers of students; none of
the existing languages was suitable.

To meet these needs, the two of us, with the help of a group of
exceptionally able undergraduates, developed the first fully functional
general-purpose time-sharing system. We also developed a new language,
one that was ideal for introducing beginners to programming and yet
could serve as a language for all applications, even for large and complex
software systems.

The new language was BASIC. Its wide acceptance went far beyond
anything we had hoped for. That was the good news. The bad news was
that its very success led to problems. There developed a proliferation of
BASICs, ranging from the excellent to the terrible. If we are the parents
of BASIC, there are some descendants we would frankly like to
disown!

At Dartmouth we had a clear philosophy about the language. As it
grew from modest beginnings to the “all-purpose’ language we intended,
we did not lose sight of the original principles. The name BASIC stood for
Beginner’s All-purpose Symbolic Instruction Code. The first word of that

vii



viii INTRODUCTION

acronym is as relevant today as it was then. No matter how powerful the
language became, we never forgot the needs of beginners.

We worked hard to make it truly general-purpose, while keeping the
original clean and simple design. When computer science made the case
for fully structured languages, we and our colleagues redesigned and
expanded the structures in BASIC. When graphics terminals became
available, we added a powerful and easy-to-use graphics package. As a
result, over 90 percent of the Dartmouth students became computer-
literate (that is, able to write simple programs), the computer became
essential to hundreds of courses, and BASIC became the language of
choice in a highly diverse academic community.

The fate of BASIC in the outside world was not so fortunate. The
great improvements that were taken for granted here, and at some other
institutions, did not make their way into most commercially available
versions of the language. And when microcomputers appeared, first with
very limited capabilities, software houses made severe compromises in
order to fit BASIC into very small memories. Microcomputers are now
much larger and faster even than the computer on which BASIC was
born back in 1964, but the compromises have become ‘features,” and
they were kept—no matter how ugly.

Worst of all, the original philosophy that led to BASIC was lost
sight of. For example, we have always believed that users should be
protected from the peculiarities of the hardware, so that BASIC
programs could be run on all kinds of machines. Instead, there are now
several versions of BASIC on each microcomputer. It is even true that
versions written by the same firm, for different computers, are grossly
incompatible. And even the best of these tend to be roughly vintage 1966
BASIC.

Today the world doesn’t have to be sold on the importance of
computing and computer literacy. But the world has not yet fully learned
what we were able to demonstrate two decades ago—that a simple, well-
designed language and a simple computer interface can allow the many
to know what only a few could know before.

Delivering computer power is no longer a problem—personal
computers do it so much better than the crude time-sharing system we
developed years ago. But computer language still remains a problem. We
decided that once more we had to step in and take charge. We believe
that we can construct a powerful, modern, easy-to-use BASIC for
microcomputers, and still adhere to the tried and true principles we set
down years ago. This new BASIC is called True BASIC. Written with the
aid of three systems programmers who have a long association with
Dartmouth, it will be available on most of the newer microcomputers.



INTRODUCTION ix

Once again it will be possible to have the same program run on a variety
of machines.

Over the past decades we have often been urged to recount the
history of the language, why we created it, and what principles
distinguish it from earlier computer languages. Although one of us
(Kurtz) did write an account for experts,' we have never told the story to
a general audience. During the intervening years other commitments
made such a project impossible. Tom Kurtz served as the first director of
the Kiewit Computing Center at Dartmouth and was heavily involved in
regional and national computing projects. John Kemeny served as
president of Dartmouth College for eleven and a half years. With the
appearance of True BASIC, now seems like a good time to tell the full
story.

This book is the story of BASIC, from its elementary version in 1964
to True BASIC in 1984.

The first three chapters of the book are a history of BASIC, from
birth, to its growth into a powerful language, to the development of a
fully structured modern language. It is a personal history, and we recount
many details not previously published. We have tried to recall why we
did what we did, what decisions turned out to be fortunate, and where we
erred.

Chapter 4 discusses what went wrong. Unfortunately, a great deal
did. If the reader cannot resist a quick peek at that chapter, we promise
not tell anyone!

Chapter 5 is aimed at those millions who have programmed in some
version of BASIC but have never seen the kind of BASIC we have used at
Dartmouth for nearly a decade. It introduces the reader to structured
programming through carefully chosen examples. We make the case that
the transition from a sloppy version to the fully structured one is not
difficult. And once one makes the transition, one will never revert to old
habits. We know, because we had to go through this transition ourselves.
The result is that long programs are much easier to write, to debug, and
to read.

In chapter 6 we attempt a factual comparison with some of the more
popular computer languages. Our aim is to show that structured BASIC
deserves to be ranked as an equal among other ““serious’ languages. It is
still one of the easiest languages to learn, and yet it has all the features
one would want for introductory courses in programming or computer
science, or for large application packages.

Chapter 7 is there purely for the fun of it. We hope by then to have
whetted the reader’s appetite for structured BASIC, and want to share a
variety of examples. The examples are, we trust, interesting in them-



X INTRODUCTION

selves. And they illustrate the ease with which a wide variety of
applications can be programmed.

JouN G. KEMENY
TuoMas E. Kurtz
September 10, 1984



BACK TO BASIC

The History, Corruption,
and Future of the Language



CONTENTS

Introduction vii
1: The Birth of BASIC 1
2: BASIC Grows Up 1964-1971 19
3: BASIC Matures 1971-Present 39
4: What Went Wrong? 55
5: Structured Programming 67
6: True BASIC and Other Languages 89
7: Further Examples 107
Notes 135
Index 137



THE BIRTH OF BASIC

Our memories of the birth of BASIC are still vivid after more than two
decades. On most points our recollections agree, and we will share these
with you. In a few cases our memories do not agree or the recollections are
very personal. In these cases each will speak for himself.

THE BAD OLD DAYS

Let us recount what the normal use of computers was in 1963. Computers
in the modern sense had existed since the early fifties, but they were large
beasts and very expensive. Computer center directors considered it their
major task to protect machines from human inefficiency. Since com-
puters were so fast and so expensive, while human beings were slow (and
cheap?), schedules were designed to maximize the amount of computing
carried out by a machine.

The human user punched a program on IBM cards and submitted it
to an operator. The operator collected hundreds of such jobs and fed
them to the computer in a “batch.” The machine worked on one task at a
time, until it was completed, and then printed results on a not-very-fast
printer. When all the jobs in the batch were completed, it was time for
the next feeding of the computer.

The user returned the next day to pick up the results. Since the



2 BACK TO BASIC

computer could carry out in seconds what would take a human being
weeks or months, it seemed reasonable to wait twenty-four hours for the
results. And so “batch processing” was universally accepted.

It might indeed have been a good system if the user received a
solution the next day. But what he or she found on the printout was
something like “Illegal instruction on card 27.” And then the long process
of finding errors, or “debugging,” began. The first few days were needed
just to correct keypunching errors.

KEMENY: One of the happiest days in my life was when I realized
that I would never have to punch another card! The keypunch
was an awkward device, and any punching error required
tearing up the card, and starting over, since there was no
reasonable way of plugging up the little holes.

Then one day there was not even an error message, just a blank piece of
paper. Perhaps the computer had calculated the answer to the problem,
but the user forgot to specify that the answer should be printed, so it
wasn’t! An additional card was hastily inserted—too hastily—and the
result was twenty printed pages jammed full of numbers, when you
expected a one-line answer. And so it continued until, about two or three
weeks later, you actually obtained a solution to your problem.

KeMENY: 1 first became aware of the shortcomings of batch
processing in the summer of 1956, as a consultant to the
RAND Corporation (Santa Monica, California). I saw highly
paid experts stand in line for hours to get a five-second
debugging shot. I left behind a recommendation that a system
be devised to allow brief debugging interruptions to the batch
system. But I had not yet faced the need to change the system
of computer use completely.

Kurrz: Iremember one of my early experiences at Massachusetts
Institute of Technology, in 1956 or ’57, with batch processing. I
was then a poorly paid instructor and research associate, so it
was of no consequence that it took several months to solve my
problem (I visited MIT once every two weeks, by train). But it
was a shock to realize that I had used up more than an hour’s
worth of very valuable computer time on the IBM 704! It must



THE BIRTH OF BASIC 3

have been all those ‘““memory dumps” I took to study between
visits to MIT.

As we began to plan a computer system for Dartmouth, it became
clear that these old ways would not work. Scientists and engineers might
be willing to put up with such service, but we were convinced that
Dartmouth students would rebel.

A BETTER IDEA

There were some experiments going on (notably at MIT and Bell Labs)
that would allow a number of people to use the same computer at the
same time. The great speed of the computer would allow all of them to
receive fast service. And although people would make just as many
mistakes, error messages would appear within seconds, and one could get
a program debugged in fifteen minutes to half an hour. It was expected
that the system would be less efficient but much kinder to human beings.
The machine waited on human convenience, not the reverse! And the
ultimate irony would be that these user-friendly systems would prove
more efficient than batch processing. As Kurtz recalled, with batch
processing users tended to ask for enormous and costly ‘“memory dumps”
that were totally unnecessary if one received fast response and could try a
correction immediately.

Kurtz: We started thinking about time-sharing in the early
sixties. While I was visiting John McCarthy at MIT, he told
me, “You guys ought to do time-sharing.” I went back to
Dartmouth, said the same thing to John Kemeny, and he
instantly agreed. There simply was no question in either of our
minds.

KeMENY: It was in 1962, while I was chairman of the Dartmouth
Mathematics Department, that my colleague Tom Kurtz
came to me with an outrageous suggestion. He started by
asking, “Don’t you think the time is approaching when every
student should learn how to use a computer?”” And I said,
“Sure, Tom, but it isn’t physically possible to teach so many



4 BACK TO BASIC

students.” And then came Tom’s radical proposal: “I think we
could design a completely different way of using computers
that would make it possible to give computer instruction to
hundreds of students.”

At the time, Dartmouth had only a very small computer. We had
already learned that able undergraduates could achieve incredible
results with the most primitive computer. But the computer was so small
that it could be used by only one student at a time. It was far less
powerful and had far less memory than today’s personal computers. It
therefore had to have quite fancy software if many students were to use
it. So we began experimenting.

Kurtz: In one experiment with this computer, which was an
LGP-30, we were able to allow about five students to complete
their small programs in a total time of fifteen minutes. Each
student could have two or three ‘“turnarounds’ in that fifteen-
minute period. Then another five students would show up.
This convinced me that an easy-to-use interactive system
could allow hundreds of students to use it and thus learn about
computers.

KeEMENY: Tom’s suggestion—to open computing to all students—
was a radical one, way ahead of its time. It would significantly
alter the modern history of the college and have a major
national impact.

We decided to design and implement such a time-sharing system at
Dartmouth. We came up with a totally new computer architecture, in
which one computer took care of all communications and scheduling,
while the other could concentrate on serving one user at a time. We used
two -General Electric (GE) computers for tasks their designers never
intended, and set Dartmouth on a road that would put it into a
pioneering role in computer education.

We were very fortunate to receive full support from President John
Sloan Dickey and the Board of Trustees. Dean Leonard M. Rieser, a
physicist, was an early and ardent supporter. And the dean of our
engineering school was Myron Tribus, one of the most far-sighted people
we know. He became a great booster. We believe that they, with the help
of a key trustee, were responsible for getting full Dartmouth backing. We



THE BIRTH OF BASIC 5

were even allowed to “go GE” when most of the world was pressuring us
to “go IBM.”

We approached the National Science Foundation (NSF) for the
necessary funds (mostly for equipment, and modest for those days). They
submitted our application to outside referees. A typical reviewer said
that we had no idea how large and difficult a task we were undertaking.
We were hopelessly understaffed—two faculty members part-time plus a
dozen students. And not even graduate students but undergraduates! To
the credit of NSF, they took a chance on us in spite of the negative
evaluations. And one year from the start of our project (seven months
after the equipment arrived), we were teaching hundreds of students on
the Dartmouth Time Sharing System.

The reviewers were right that we didn’t know how difficult a job we
were undertaking. If we had, we might never have tried. But they were
completely wrong about the use of undergraduates. I would later say that
we were first to succeed because the others used professionals while we
used undergraduates! Undergraduates will work endless hours, are open
to new ideas, creative, and willing to take on impossible tasks.

For example, John McGeachie and Mike Busch solved the problem
of communication between two completely different GE computers, one
of which did not even have a manual since it was never intended to be
programmed outside the factory. It was the strangest collaboration we
have ever witnessed: two students from very different backgrounds, of
different temperament and appearance, each thoroughly identified with
“his” computer. They would stand by their machines and yell at the tops
of their voices: “Mike, you are not responding!” “Why, you never got
through to me!” They may have been the original odd couple, but what
they achieved, in the short time they had, was truly astounding.

It was highly appropriate that when the Federation of Information
Processing Societies awarded us their first Pioneers’ Day award, our
students received recognition as full partners.

The coming of time-sharing fundamentally changed the use of
computers. Although at the time it would have been prohibitively
expensive to give each user his or her own computer, we were able to
create the illusion that the large computer was just sitting there waiting
to serve. It was the beginning of personalized, interactive computing.
The recent arrival of personal computers will carry the availability of
individualized computer service to a much larger group of users. But the
essential breakthrough occurred in 1964.

5

KeMENY: In the midst of planning time-sharing, I made a
suggestion: “Tom, if we design this great new system, why



6 BACK TO BASIC

don’t we also create a really nice language? Surely we can do
better than FORTRAN for teaching purposes?”’ It led to one of
the few disagreements I had with Tom. He agreed in principle
that we could design a much nicer language, but felt that it
might be possible to come up with reasonable subsets of
FORTRAN or ALGOL. His worry was that we would teach our
students a language that could not be used outside of
Dartmouth.

Tom deserves all the credit for proposing the time-sharing
project. But I do occasionally remind him of the fears he once
had about our new language. The language is BASIC, and it is
now the most widely used computer language in the world.

THE ORIGIN
OF THE SPECIES

A computer is created speaking one language, called—not surprisingly—
“machine language.” Its alphabet consists of zeros and ones, corre-
sponding to electronic or magnetic devices being “off” or “on.” To make
it slightly more palatable, the manufacturer provides an “assembly
language,” which allows mnemonic codes for frequently used com-
binations of zeros and ones, and provides certain other shortcuts. Yet
assembly language is difficult to learn and use, and most computer
scientists agree that one should go to almost any extreme to avoid having
to code in assembly language. It is time-consuming, frustrating, hard to
read, and very hard to debug.

The appearance of FORTRAN (around 1957) was a major advance
in computer programming. It allowed one to write programs in a
combination of a few English words and mathematical formulas. The
language was designed for numerical applications, particularly for
engineers. A much improved version of the language is still widely used
today.

But it was intended to be used by experts. It was common to take
two months of training in FORTRAN before you tried writing your first
program.And the alternatives were no better for our purpose. We wanted
a language for a lay audience, one that could be learned easily and whose
advanced features could be learned later, when the student was ready for
more sophisticated concepts.

The genealogy of BASIC really goes back to 1956. We began



THE BIRTH OF BASIC 7

computing on the IBM-704, first at General Electric in Lynn, Massa-
chusetts, and later at MIT. FORTRAN didn’t arrive until the following
year, so we had to learn SAP (Symbolic Assembly Program), which was
assembly language. But would our colleagues be willing to learn SAP if
they wanted to do computing? We thought not, and so devised a
simplified version of it that we called Darsimco, for Dartmouth
Simplified Code.

The idea was to provide templates, or sequences of instructions, for
performing most of the simple tasks. For instance, if “A = B + C” was
wanted, Darsimco said to use

FLD B
FAD C
FST A

Persons familiar with assembly language will recognize the sequence as
“floating load, floating add, floating store.” Our colleagues didn’t have to
understand what FLD, FAD, or FST meant; all they had to do was to use
them as we prescribed.

Darsimco didn’t catch on and therefore must be judged a failure.
Besides, FORTRAN became available the following year. But the point
is that we were both deeply concerned about making computing as
simple as possible. Seven years later, in 1963, we finally hit on the way to
do it—interactive computing with BASIC.

Kurtz: The experiment I mentioned earlier took place on the
LGP-30. Steve Garland and Bob Hargraves, together with
classmates Anthony Knapp and Jorge Llacer, had built a
compiler for the ALGOL language. Later they constructed a
“load and go” version of ALGOL. We called this system Scalp,
which stood for Self Contained ALGOL Processor. All the
student user had to do was to load his paper tape, and Scalp
would either run the program or produce error messages.
There was even a crude interactive debugger, so the student
didn’t have to leave the machine to make trivial corrections.

KeMENY: We experimented both with implementation of
standard languages and with the creation of new, easy-to-
learn languages. Our students Steve Garland and Bob Har-
graves showed us what incredible achievements we might
expect from undergraduates. (They would both return to



