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INTRODUCTION

For the analysis of hypersurface singularities and their deformations

the Milnor lattice and the invariants associated with it play an
important réle. The middle homology group of a Milnor fibre of the
singularity is a free abelian group, which is endowed with a bilinear
form, the intersection form. This bilinear form is symmetric or skew-
symmetric, if the dimension is even or odd respectively. This group

with this additional structure is called the Milnor lattice H. The
monodromy group I of the singularity is a subgroup of the automorphism
group of this lattice. It is generated by reflections, respectively
symplectic transvections, corresponding to certain elements of the Milnor
lattice, the vanishing cy¢les, which are defined in a geometric way. These
form the set A < H of vanishing cycles. The monodromy group is al-
ready generated by the respective automorphisms corresponding to the
elements of certain geometrically distinguished bases of vanishing
cycles. The set of Dynkin diagrams (or intersection diagrams) correspond-
ing to such bases yields another invariant. A survey of the relations
between these invariants and their importance for the deformation theory
of the singularities in the hypersurface case is given by E. Brieskorn

in his expository article [Brieskorn3].

By stabilizing we can restrict ourselves to the symmetric case in
the hypersurface situation. For the simple hypersurface singularities the
monodromy groups and the sets of vanishing cycles are finite, and it is
well-known that they coincide with the Weyl groups and root systems

1)

respectively corresponding to the classical Dynkin diagrams of type

Am' Dm' E6’ E,, or E8' In the general (symmetric) case there arises the
question about the nature of these infinite reflection groups and these

infinite subsets of the Milnor lattice and about a characterization of
these invariants. The work on this question was stimulated by a result

of H. Pinkham [Pinkham1] of the year 1977. Pinkham showed that the
monodromy groups of the fourteen exceptional unimodal hypersurface
singularities are arithmetic . In the sequel we were able to prove that

the result of Pinkham is true for large classes of hypersurface

1 The notation "Dynkin diagrams" for these graphs was introduced by

N. Bourbaki [Bourbaki.,], and is commonly used for these graphs since.
Usually one also deno%es the more general intersection diagrams of
arbitrary hypersurface singularities by this name. We shall also use this
notation in this monograph.Unfortunately, this notation does not seem

to be historically justified. More accurately, these graphs should be
attributed to H.S.M. Coxeter. However, Bourbaki calls the closely re-
lated graphs associated with Coxeter systems Coxeter graphs. We follow
Bourbaki and reserve this notation for these graphs, too (cf. Remark
4.1.4, Example 5.2.4, and Chapter 5.5).
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singularities, using a theorem of M. Kneser. On the other hand it was
clear from the beginning that this result could not be true for all
hypersurface singularities. One can find exceptions among the other
unimodal hypersurface singularities, which appear at the beginning of
Arnol'd's classification, namely among the hyperbolic singularities

forming the -series.

) Tp,q,r

The Milnor lattices, monodromy groups, and vanishing cycles are
more generally defined for isolated singularities of complete inter-
sections. Therefore one can also consider the above question in this
larger context. The aim of this monograph is to explore these invariants
for this general class of singularities, which embraces the hypersur-
face singularities. This investigation is centred upon the above question.

In order to be able to study these invariants, we first elaborate
suitable procedures to compute these invariants. Here we are guided by
the hypersurface case. In this case one uses Dynkin diagrams corresponding
to geometric bases of vanishing cycles for the calculation of these
invariants. However, the notion of a geometric basis of vanishing cycles
cannot be readily transferred to the general case. Though one can also
consider the corresponding systems of vanishing cycles in the complete
intersection case, they are no longer linearly independent, unless we
are in the hypersurface case, and one also has to take the linear
relations among these cycles into account. We introduce an appropriate
notion of a Dynkin diagram for an isolated complete intersection
singularity. We present methods to compute such Dynkin diagrams.

We apply these methods to determine Dynkin diagrams and the in-
variants derived from these graphs for the singularities at the lowest
levels of the hierarchy of isolated complete intersection singularities.
Using these results, we are in particular able to classify the isolated
complete intersection singularities with a definite, parabolic, or hyper-
bolic intersection form. This extends the corresponding classification
of Arnol'd in the hypersurface case [Arnol'd1] to the case of complete
intersections. Moreover, one discovers many interesting relations in
this way.

As the main result of this monograph we can answer the question
about a characterization of the monodromy groups and of the vanishing
cycles in the symmetric case completely. We can show that the monodromy
groups and vanishing cycles of all even-dimensional isolated complete
intersection singularities except the hyperbolic singularities can

be described in a purely arithmetic way, i.e. only in terms of the Milnor
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lattice. In particular the simple parts of the monodromy groups are
arithmetic 1in these cases. For the hyperbolic singularities one can
give another, though non-arithmetic, description of these invariants.
These results can also be applied to global monodromy groups. So for
example one can prove that the monodromygroup of the universal family
of projective complete intersections of a fixed (even) dimension and
multidegree is arithmetic. The proof of these results is reduced to
algebraic results on reflection groups corresponding to vanishing
lattices by means of our calculation of Dynkin diagrams.

We now give a survey of the contents of this work in detail. The
monograph is divided into five chapters.

In the first chapter we introduce the invariants of isolated
singularities of complete intersections to be considered later. Here
we alter the point of view compared to the hypersurface case slightly.
In the general case we do not regard merely the Milnor lattice, but a

short exact sequence of lattices

0—>H'——>ﬁ—>H—>O,

including the Milnor lattice H, as the basic invariant. This sequence
is defined as follows (cf. Section 1.1). Let (X,x) be an isolated
singularity of an n-dimensional complete intersection, and let
F = (F1,...,Fp) 2 (En+p,0) —> (Ep,O) be the semi-universal deform?t%on .
of (X,x). We choose a line & in the base space ¢P through the originwhict
intersects the discriminant of F at the origin transversally. Without
loss of generality we assume that the coordinates of tP are chosen in
such a way that this line coincides with the last coordinate axis. Then
F' = (F1,...,Fp_1):(¢n+p,0) — (mp'1,0) defines an isolated singularity
(x',x). Let X, and xé be the Milnor fibres of (X,x) and (X',x)
respectively. Then the above sequence is part of the long exact (reduced)
homology sequence of t?e pair (X',XS). This means that H = ﬁn(xs,z),
H' = Hn+1(X£,Z), and H is the relative homology group Hn+1(X£,XS).
On these modules we consider the bilinear forms induced by the inter-
section form on H.

For each invariant associated with the Milnor lattice H we can
then consider a corresponding relative invariant which is related to

the lattice ﬁ . In this way the vanishing cycles are associated

with the thimbles which were already considered by Lefschetz (Section 1.2).
A
These form the set A. To the monodromy group I corresponds the re-
A
lative monodromy group [ (Section 1.3). The natural generalization of

the notion of a weakly or strongly distinguished basis of vanishing
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cycles in the hypersurface case is considered in Section 1.4: This is a
weqkly or strongly distinguished basis of ﬁ consisting of thimbles. So
the Dynkin diagrams which are introduced in Section 1.5 are Dynkin dia-
grams corresponding to weakly or strongly distinguished bases of
thimbles of ﬁ. As in the hypersurface case they are not uniquely deter-
mined, and we also study the possible transformations of these diagrams
in thié section. At the end of Section 1.5 we show the invariance of

the introduced objects. A Dynkin diagram corresponding to a strongly
distinguished basis of thimbles determines the remaining relative
invariants, in partlcular also a special element of the relatlve
monodromy group F, namely the relative monodromy operator c. We discuss
in Section 1.6 to what extent one can get informations about the

module H', and hence about the whole fundamental exact sequence a?ove,

A
from the knowledge of H and of the relative monodromy operator c.

In Chapter 2 we describe our methods for the computation of
Dynkin diagrams corresponding to strongly distinguished bases of
thimbles. We derive a generalization of a procedure of Gabrielov in
the hypersurface case [Gabrielov3] (Section 2.2). Our calculations are
essentially based on this method. This procedure allows us to reduce
the calculation of Dynkin diagrams to the calculation of Dynkin diagrams
for simpler singularities. Here the polar curve of the singularity plays
an important rgle. The necessary definitions and facts about polar
curves and polar invariants in the case of complete intersections are
collected in Section 2.1. The simplest singularities of complete inter-
sections which are not hypersurfaces are the isolated singularities of
intersections of two quadrics. For such a singularity H. Hamm has given
a basis of the Milnor lattice H [HammZ]. In Section 2.3 we show that the
basis of Hamm consists of vanishing cycles and that these cycles bound
the thimbles of a strongly distinguished basis of ﬁ. We compute the
Dynkin diagram corresponding to this basis and analyze the invariants
of this special singularity by means of suitable transformations of this
Dynkin diagram. It turns out that there exists a close relation to
K. Saito's theory of extended affine root sys?ems [Saito1], which we
discuss in Section 2.4. Finally Section 2.5 deals with another method
to compute Dynkin diagrams. This is a generalization of a method of
F. Lazzeri in the hypersurface case to determine the intersection matrix
using the relations of the fundamental group of the complement of the
discriminant. We explain this method by means of an example which is
essential for the later applications, but where the application of the

procedure of Section 2.2 already leads to considerable difficulties.
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In Chapter 3 we apply the method of Chapter 2.2 to calculate
Dynkin diagrams for some special singularities. Here we only consider
singularities which are given by map-germs f : (¢n+%0 ) —> (EZ,O) with
df (0) = 0 and with regular 2-jet. This means in particular that H'
has rank 1 in this case. In Section 1.1 we consider the classification
of these singularities of any dimension, and we introduce the classes
of singularities which will be considered later. Part of them will play
a rgle in Chapter 4. These classes are characterized by the Segre symbol
of the 2-jet. At the beginning of the classification one finds after
the intersections of two quadrics the n-dimensional singularities
T;,q,Z,s
Section 3.2 we explain in detail how one can compute Dynkin diagrams

(segre symbols {1,...,1,2} and {1,...,1,(1,1)}). In

for these singularities using the method of Chapter 2.2. It turns out
that these singularities are hyperbolic in the even-dimensional case.
Section 3.3 is devoted to two other classes of n-dimenional

J(nf1)- and K(n-1)—

singularities, namely the singularities of the
series (Segre symbols {1,...,1,3} and {1,...,1,(1,2)} respectively).
Here the calculation of Dynkin diagrams follows the pattern of Section
3.2. The remaining sections of Chapter 3 are not needed for Chapter 4.

In Section 3.4 we focus our attention on the case of curves and con-
sider in particular Dynkin diagrams for the simple space curve
singularities. The surface case is considered more fully in Sections 3.5
and 3.6. Section 3.6 deals in particular with the triangle singularities
and the extension of Arnol'd's strange duality observed in [Ebeling-Walll].
For the space curve and surface singularities of Sections 3.4 and 3.6

we obtain Dynkin diagrams which are closely related to the Dynkin dia-
grams of Gabrielov for thé unimodal hypersurface singularities. We study
the Coxeter elements of these graphs and show how our results fit to-
gether with new results of K. Saito about Coxeter elements of a certain
class of graphs. Section 3.6 provides supplementary information on the
extension of the strange duality exceeding and completing the paper
[Ebeling-Wall] in certain aspects. Finally we mention a particular result
of our calculations: One finds topologically non-equivalent singularities,
for example already among the triangle singularities, whose monodromy
operators are conjugate over @ (Corollary 3.6.4).

The main results of this work are described in Chapter 4. These
results are stated in Section 4.1. We first classify the isolated complete
intersection singularities with a definite, parabolic or hyperbolic
intersection form (Theorem 4.1.1). Then we give a description of the
monodromy groups, of the relative monodromy groups, and of the sets

of vanishing cycles and thimbles for almost all isolated singularities



of even-dimensional complete intersections (Theorems 4.1.2 and 4.1.3).
The only exceptions for which these characterizations are not true be-
long to the hyperbolic singularities. In Remark 4.1.4 we show that in
this case one can find a description of these invariants in the frame-
work of Kac-Moody-Lie algebras. For the hypersurface case and partially
for the case of two-dimensional complete intersections in E4 these re-
sults are already published in [Ebelings] and generalize earlier results
in [Pinkham1], [Ebeling1],[Ebe1ingz], and [EbelingB]. At the end of
Section 4.1 we quote the most important results corresponding to these
results in the odd-dimensional case. Here we refer to [Janssen1] for
details. The proof of our central results consists in a reduction to

algebraic theorems, which are proven in Chapter 5. For this reduction,

which is described in Section 4.2, we need the results of the first
three chapters. In Section 4.3 we discuss applications to global
monodromy groups and Lefschetz pencils. In this way we return to the
context in which the vanishing cycles and thimbles were originally
introduced by S. Lefschetz.

In Chapter 5 we have collected the algebraic results on which the
proof of the theorems in Chapter 4 is based. Here we consider subgroups
FA of the group of units of an integral symmetric lattice L which
are generated by reflections corresponding to the vectors of a subset
A < L. Here the pair (L,A) has to satisfy the following conditions:
(i) A consists only of minimal vectors of square length 2¢ ,
e€ {+1,-1} fixed, (ii) A generates L, (iii) A 1is a T ,-orbit,

A

(iv) wunless rk L = 1, there exist § 62 €A with <61,62> = 1. Such

’
a pair is called a vanishing lattice, ;ollowing a terminology of

W.A.M. Janssen and E. Looijenga (Section 5.2). Typical examples of such
vanishing lattices are the pairs (H,A) and (ﬁ,ﬁ). We show that a
vanishing lattice which contains a certain small vanishing sublattice

of Witt index 2 (and which is called complete in this case) is already
the maximum possible vanishing lattice (Sections 5.3 and 5.4). This
means that the subset A 1is maximum, hence contains all minimal vectors
v of square length 2e with <v,L> = Z , and FA contains all
reflections corresponding to minimal vectors of square length 2e. It
then follows from a theorem of M. Kneser [Kneser1] that the elements of
FA are characterized by the properties that they have spinor norm 1

and act trivially on the quotient L#/j(L) of the dual lattice L#

by the image of the lattice L. In Section 5.5 we show that these
statements also hold true for some vanishing lattices defined by Coxeter
systems, whereas in general these statements are not true for such
vanishing lattices. Up to some supplements, Chapter 5 is largely

identical with §§ 1 - 3 and part of § 5 of the paper [Ebelings].
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This monograph is a translation of the author's "Habilitations-
schrift" (Bonn 1986) with some minor modifications and corrections. A
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1. INVARIANTS OF COMPLETE INTERSECTIONS

1.1. The fundamental exact sequence

Let (X,x) be an isolated complete intersection singularity of dimen-

sion n. This means that (X,x) 1is a germ of a complex analytic space
of dimension n, which is isomorphic to the fibre (f_1(0),0) of an

analytic map-germ
£:(€™*,0) — (¥,0),
and x€X 1is an isolated singular point of X. For k=1 (X,x) 1is an

isolated hypersurface singularity.
An isolated complete intersection singularity has a semi-universal

deformation
F: (€™*P,0) — (cP,0)

with smooth base space. Let BE be an open ball of radius € around

s + " <
the origin in c” p_ We consider a representative of F of the form

F:X = F 1 (S) n B, — S

for a neighborhood S of 0 in €F. The germ of the sat

Cp = {yex | v is a critical point of F}

in 0 is the critical locus of F. The germ of its image Dp =F(CF)

in 0 1is the discriminant (locus) of F. The discriminant (DF'O) is

a reduced irreducible hypersurface in (mp,O).
For a sufficiently small € and a sufficiently small neighborhood

S of 0 in Ep, the mapping

:X-—F-1(DF) —> S-D

To.)

F
I x—p~ (D v

is the projection of a differentiable fibre bundle. The typical fibre
X of this bundle over a base point s¢€ S - Dp has by [Milnor1],
[Hamm1] the homotopy type of a bouquet of pu spheres s of real
dimension n. The fibre Xs is called the Milnor fibre, the number p
the Milnor number of (X,x). The only non-trivial reduced homology

group of X_ is the group En(XSrZ)- This is a free Z-module of rank u.



The intersection number of cycles defines a bilinear form <,> on this
module, which is symmetric for n even and skew-symmetric for n odd.
We call

H = (Hm(XS'Z)’ <,>)

the Milnor lattice of (X,x). If the dimension n 1is even, then one

has in addition <v,v>€ 2Z for all Vv E€H, i.e. the Milnor lattice is
an even lattice in this case.

We now consider a construction, which can be traced back to Lé
Dung Trang (cf. [Léz], [Looijenga3]). We regard a generic complex line
% through the origin O0E€ Ep, i.e. a line which is not contained in the
tangent cone of the discriminant (DF,O) in 0. We assume that the
coordinates of P are chosen in such a way that this line coincides
with the last coordinate axis. This means in particular that this line
meets the discriminant only in 0. But this is equivalent to the fact
that

P' = i ann sl :(€™*P,0) —> (€P71,0)

p-1)
defines an isolated complete intersection singularity of dimension
n+1.

We now choose the neighbourhood S of the form S = TxD for

a disc

D={zecC| |z| <n}.
Let €,n , and T be chosen so small and suitable that the following
conditions are satisfied:

(i) For the representative
F':X'= F'" ' (T) nNB, —> T,

the following is valid: The mapping

-1
' . - -_
F'| 1 X! F' (DF,) —> T D

T F'
X'=F (DF.)

is the projection of a differentiable fibre bundle. The typical fibre
of this bundle is a Milnor fibre of (X',0).



(ii) There exists a homeomorphism
h:X = F 0 (S) nB, — X' = F () nB_ ,

such that the following diagram commutes:

T xD
ln

T
Here 7 denotes the projection onto the first factor, and h is the
identity on F_1(T‘XD1) with ﬁ1cID. This is possible by [Lcoijengasg,

S =

F
_— 5
F'
_— s

x| €e— X
=2

Proposition (5.4)].

(iii) s - DF represents the homotopy type of S - DF at o0
[Looijenga3, (7.3)1.

The restriction of the projection w:S —> T to the discriminant
D = DF is finite. Let t be a point of T which is not contained in
the image of the ramification locus of nlD .

We now consider the mapping
X! = BT (k) nB, —> {t}xD .

Fly; :X¢

=

This mapping corresponds to the function

By the choice of t there are exactly m intersection points of

{t} xD with the discriminant D, where m is the multiplicity of
the discriminant at the origin. We denote these points by SqreeesSp.
A fibre Xsi over such a point has exactly one singularity, and this
is an ordinary double point. Off these singular fibres, the mapping
FIXJ,C = Fp is the projection of a differentiable fibre bundle. We
choose s = (t,n) € {t} xD as base point. The fibre X, over the
point s 1is a Milnor fibre of (X,x). The situation is illustrated
in Figure 1.1.1. Here the manifold Xé appears as a ball, which is,

however, in fact only true in the hypersurface case. The manifold XE

has the homotopy type of a bouquet of pu' spheres Sn+1, where p'



