Peter M.D. Gray
Krishnarao G. Kulkarni
NormanW. Paton

Object-Oriented
Databases

A Semantic Data
Model Approach

C.A.R. HOARE SERIES EDITOR

OBJECT-ORIENTED DATABASES
A Semantic Data Model Approach

Peter M.D. Gray
University of Aberdeen, Scotland

Krishnarao G. Kulkarni
Digital Equipment Corporation, Colorado

Norman W. Paton
Heriot-Watt University, Scotland

AR

E9361253

|

Prentice Hall
New York London Toronto Sydney Tokyo Singapore

L IR SR
‘{P,ﬂ % },.;*4‘ ‘

#s
b

First published 1992 by

Prentice Hall International (UK) Ltd
Campus 400, Maylands Avenue
Hemel Hempstead

Hertfordshire, HP2 7EZ

A division of

Simon & Schuster International Group

© Prentice Hall International (UK) Ltd, 1992

All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical,
photocopying, recording or otherwise, without prior
permission, in writing, from the publisher.

For permission within the United States of America
contact Prentice Hall Inc., Englewood Cliffs, NJ 07632.

Typeset in 10/12pt Times
by Mathematical Composition Setters Ltd,
Salisbury, Wiltshire

Printed and bound in Great Britain at
Dotesios Limited, Trowbridge

Library of Congress Cataloging-in-Publication Data

Gray Peter M.D., 1940-
Object-oriented databases: a semantic data model approach/ Peter
M.D. Gray, Krishnarao G. Kulkarni, Norman W. Paton.
p. cm. —— (Prentice-Hall International Series in Computer Science)
Includes bibliographical references and index.
ISBN 0-13-630203-3
1. Object-oriented databases. I. Kulkarni, Krishnarao G.
II. Paton, Norman W, I11. Title. IV. Series.
QA76.9.D3G7222 1992
005.75--dc20 91-32213
CIP

British Library Cataloguing in Publication Data

Gray, Peter M.
Object-oriented databases: A semantic data model
approach. :
I. Title II. Kulkarni, Krishnarao
I1I. Paton, Norman W,
005.74

ISBN 0-13-630203-3
12345 9695949392

Object-Oriented Databases

I % R :
i A
P LA

o
-

Prentice Hall International Series in Computer Science

C. A. R. Hoare, Series Editor

BACKHOUSE, R. C. Program Construction and Verification

DEBAKKER, J. W., Mathematical Theory of Program Correctness

BARR, M. and WELLS, C., Category Theory for Computing Science

BEN-ARI, M., Principles of Concurrent and Distributed Programming

BIRD, R. and WADLER, P. Introduction to Functional Programming

BORNAT, R., Programming from First Principles

BUSTARD, D., ELDER, J. and WELSH, J., Concurrent Program Structures

CLARK, K. L. and McCABE, F. G., Micro-Prolog: Programming in logic

CROOKES, D., Introduction to Programming in Prolog

DAHL, O-J., Verifiable Programming

DROMEY, R. G., How to Solve it by Computer

DUNCAN, E., Microprocessor Programming and Software Development

ELDER, J., Construction of Data Processing Software

ELLIOTT, R. J. and HOARE, C. A. R., (eds), Scientific Applications of Multiprocessors
GOLDSCHLAGER, L. and LISTER, A., Computer Science: A modern introduction (2nd edn).
GORDON, M. J. C., Programming Language Theory and its Implementation

GRAY, P. M. D., KULKARNI, K. G. and PATON, N. W. Object-Oriented Databases
HAYES, I., (ed.), Sqeciﬁcalion Case Studies

HEHNER, E. C. R., The Logic of Programming

HENDERSON, P., Functional Programming: Application and implementation

HOARE, C. A. R., Communicating Sequential Processes

HOARE, C. A. R. and JONES, C. B. (eds), Essays in Computing Science

HOARE, C. A. R. and SHEPHERDSON, J. C. (eds), Mathematical Logic and Programming Languages
HUGHES, J. G., Database Technology: A software engineering approach

HUGHES, J. G., Object-oriented Databases

INMOS LTD, Occam 2 Reference Manual

JACKSON, M. A., System Development

JOHNSTON, H., Learning to Program

JONES, C. B., Systematic Software Development using VDM (2nd edn)

JONES, C. B. and SHAW, R. C. F. (eds), Case Studies in Systematic Software Development
JONES, G., Programming in occam

JONES, G. and GOLDSMITH, M., Programming in occam 2

JOSEPH, M., PRASAD, V. R. and NATARAJAN, N. A., A Multiprocessor Operating System
KALDEWALJ, A., Programming: The Derivation of Algorithms

KING, P. J. B., Computer and Communication Systems Performance Modelling

LEW, A., Computer Science: A mathematical introduction

MARTIN, J. J., Data Types and Data Structures

McCABE, F. G., High-Level Programmer’s Guide to the 68000

MEYER, B., Introduction to the Theory of Programming Languages

MEYER, B., Object-oriented Software Construction

MILNER, R., Communication and Concurrency

MORGAN, C., Programming from Specifications

PEYTON JONES, S. L., The Implementation of Functional Programming Languages
PEYTON JONES. S. L. and LESTER, D., Implementing Functional Languages
POMBERGER, G., Software Engineering and Modula-2

POTTER, B., SINCLAIR, J., TILL, D., An Introduction to Formal Specification and Z
REYNOLDS, J. C., The Craft of Programming

RYDEHEARD, D. E. and BURSTALL, R. M., Computational Cetegory Theory
SLOMAN, M. and KRAMER, 1., Distributed Systems and Computer Networks
SPIVEY, J. M., The Z Notation: A reference manual

TENNENT, R. D., Principles of Programming Languages

TENNENT, R. D., Semantics of Programming Languages

WATT, D. A., Programming Language Concepts and Paradigms

WATT, D. A.,, WICHMANN, B. A. and FINDLAY, W., ADA: Language and methodology
WELSH, J. and ELDER, J. Introduction to Modula 2

WELSH, J. and ELDER, J. Introduction to Pascal (3rd edn)

WELSH, J., ELDER, J. and BUSTARD, D., Sequential Program Structures

WELSH, J. and HAY, A., A Model Implementation of Standard Pascal

WELSH, J. and McKEAG, M., Structured System Programming

WIKSTROM, A., Functional Progrmaming using Standard ML

Introduction

This book concerns an interesting new development in computing science: the
storage of networks of objects and procedures in a database, potentially for re-use
by other users. This new development has been referred to as data-intensive
programming in the large (Zdonik and Maier, 1990), and it combines ideas from
two different fields. It takes ideas from object-oriented programming concerning
the creation and maripulation of objects, and it takes ideas from database research
concerning the sharing and long-term storage of large numbers of objects. These
are two parts of computing science that have not had much in common, and in
some ways it is like the problems the physicists face near a black hole, where they
have to take account of both quantum theory and relativity — two very different
theories which evolved independently!

The consequence of this is that we have a new field with very little agreed
terminology, and practitioners using different words for almost identical concepts!
A further problem is that different people emphasize object-oriented programming
features or database features, according to their background. In fact, any real
object-oriented database (OODB) must involve a skillful blend of ideas from both.
In this book we shall stress ideas from a particular branch of database theory called
semantic data modeling. We do this because of the powerful and intuitive semantic
constructs this provides, which we feel are appropriate for describing objects. We
shall concentrate on a particular semantic model, the functional data model,
because it includes a programming language DAPLEX (Shipman, 1981), which is
suitable for dealing with objects and is computationally rich, although incomplete.
This book is based on our experiences building large systems using this language,
during which it has been adapted into a more object-oriented style.

Xi

xii INTRODUCTION

In the course of this research we have seen the value of semantic data modeling
ideas. These ideas (which are described in Chapter 1) include the use of entities and
relationships, the possibility of computed relationships, the use of subtypes of
entities, and the importance of capturing constraints on the data such as referential
integrity, single-valuedness of particular relationships, coverage of subtypes, and so
on. These ideas are important because they emphasize that objects preserved over
a long time must satisfy strong constraints both on their types and on their
relationships to a changing network of other objects. In the absence of such
constraints the whole database may become slowly corrupted and unreliable.

Many of these ideas are known to people through the much simpler entity-
relationship model (Chen, 1976). It is now general practice to use some such
semantic model as a prelude to designing a relational database schema, which shows
that Codd’s relational model is seriously lacking in these modeling concepts. This
was pointed out by Smith and Smith (1977) in a classic paper on database
abstractions. The continuing interest in semantic modeling techniques gave rise to
a number of concrete proposals, including that of Shipman (1981), which
introduced the language DAPLEX (described in Chapter 2), which was
subsequently implemented both in the USA (Smith et al., 1981) and in Scotland
(Atkinson and Kulkarni, 1984).

The interesting thing about DAPLEX is that it combines the principles of
semantic modeling with a computationally powerful programming language based
on functions. Also, its comparatively simple type structure makes it easier to
implement an efficient and maintainable object store for DAPLEX than for more
complex models. Furthermore, it is possible to rewrite and optimize complicated
DAPLEX queries on networks of objects, in much the same way that SQL queries
(and updates) can be optimized for a relational database. Given that the relational
model has been sold partly on the strength of SQL as a universal query language
which saves the programmer from having to plan precise navigation paths and
algorithms for efficient retrieval, it is clearly important to provide similar features
for object-oriented databases. Chapter 6 shows that this is possible, based on
experience in building such a database (Paton and Gray, 1990).

However, this book is not solely about the semantic data model viewpoint. The
one area in which DAPLEX is weak is in computational completeness, thus
requiring either callouts or embedding in host languages. This is true of most query
languages that are currently available. Unfortunately, the embedding approach has
many disadvantages. Chapter 3 reviews the research on database programming
languages (DBPLs) that attempt to provide, as an alternative, a computationally
complete language for data manipulation.

Chapter 3 starts with the persistent programming language PS-algol, which was
used to implement the system described in Chapter 2, and which is still in use for
implementing other prototype systems. PS-algol has the computational power of a
programming language such as C+ +, but with strong type checking at compile
time, and the ability to make the state of any variable or data structure persist on

INTRODUCTION xiii

disk. It is an example of a database programming language with facilities for
dealing with objects on disk. Complex transactions can be written in PS-algol, as
they can in other DBPLs, but it is hard to perform global optimization on the
database access strategy of an arbitrary piece of PS-algol. Thus PS-algol seems
more likely to serve the role of an implementation language for more high-level
languages conveying the semantics of state change, for example those evolved
during the TAXIS project (Mylopoulos et al., 1980). In consequence, we look
briefly at the lessons to be learnt from implementing EFDM in PS-algol. We
conclude by discussing the more general issues of implementing semantic data
models with large data volumes, especially the problems of large object stores and
transaction processing.

In Chapter 4 we take a broad look at object-oriented technology, focusing upon
basic object-oriented concepts, and the way in which these have evolved in both the
Al field and the programming language field. We then look at how these concepts
are supported in the new object-oriented database systems, both the early
commercial systems and those evolving from research projects. The review of these
systems examines their semantic modeling facilities, as well as tracing their ancestry
back to work on DBPLs and object-oriented programming languages. Thus we
begin to appreciate the power of the object-oriented paradigm, including the crucial
ideas of encapsulation and inheritance. However, we question the utility of those
systems that still do not provide adequate conceptual data modeling facilities,
together with the means to enforce semantic constraints.

In Chapter 5 we take a more speculative look into the future as regards the
storage of procedures in object-oriented databases, and their potential for software
re-use. This is a very interesting and significant feature for the future development
of large systems. In the process we look at some of the design decisions that were
taken in modifying the functional data model so that it integrates nicely with the
object-oriented database described in Chapter 6. In particular, we consider the
various kinds of metadata that must be stored with functions, procedures and
entities, and some ways of partitioning procedures between modules. Thus far, we
have mainly seen architectures based on saved states of linked pieces of persistent
code, all accessing a database of objects, but this will not suffice for the future.
Future architectures for large Al frame-based systems will require objects with
attached procedures, both to implement integrity constraints and to provide some
form of view or behavior. Future architectures for large object-oriented systems
will require procedures to be attached to class descriptors and inherited from a
variety of superclasses, with specialization of behavior

The P/FDM system (Gray et a/., 1988) described in Chapter 6 shows one way of
storing and inheriting procedures in an OODB, combined with semantic data model
facilities. It is particularly interesting in its use of a Prolog query optimizer, and the
fact that it is in use for a large scientific application, involving the design and
analysis of large protein molecules. Thus the objects stored in the database include
both entities representing parts of actual proteins and entities representing design

xiv INTRODUCTION

choices. Thus we see how an object-oriented database can function very well as a
designer’s database, and how it is much more suitable for this than current
relational databases.

An alternative architecture for an OODB is discussed in Chapter 7 where the
ADAM language (Paton, 1989) and data model are presented. Like P/FDM, its
implementation adapts Al programming language technology, in its use of Prolog
with object identifiers and unification. However, it is more strongly based on
object-oriented concepts than P/FDM, since it emphasizes the importance of strong
encapsulation and multiple inheritance. In particular, it can inherit procedure
definitions from metaclasses and mixins. These provide a useful way of specializing
behavior but without modifying the basic system code. ADAM uses these
techniques to build extensions to itself which can both store and manipulate
abstract descriptions of relationships, as well as other semantic modeling
constructs. Furthermore, one can easily extend ADAM with methods, stored in
metaclasses, that enforce semantic constraints (Diaz and Gray, 1990). This brings
us back to our central theme of semantic data modeling.

The field is new and we do not claim to provide the definitive text — nor should
anyone else just yet! Our main purpose is to convey experience gained from
extensive experimental work, and ideas refined by discussion at many conferences
and workshops. We wish to correct the balance in the literature on OODB as it
currently exists, by re-emphasizing the importance of semantic data model
principles, and by showing how they can be used in working object-oriented
database systems. Zdonik and Maier (1990) start their collection of papers on
OODBs by saying that “The fields of programming languages, artificial intelligence,
and software engineering have all contributed to the use of object-oriented
technology in the database area. The challenge from the database side is to integrate
these threads into a single system design that maintains desired features from each
field.” In this book we have woven these threads into a particular pattern which we
hope will both satisfy and illuminate the reader.

ACKNOWLEDGMENTS

The authors would like to express their gratitude to the many friends and colleagues
who have in many different ways helped to refine the concepts discussed in this
book. Any list of reasonable length is certain to be incomplete, but those whose
contributions have most bearing upon what has come to be written include Malcolm
Atkinson, Colin Campbell, Oscar Diaz, John Fothergill, Zhuoan Jiao, Graham
Kemp and Dave Moffat.

We are also grateful to those people associated with our respective employers —
Aberdeen University, Digital Equipment Corporation and Heriot-Watt University
— who have either worked with us on issues related to the contents of this book,

INTRODUCTION XV

or who have helped to provide supportive working environments. The UK Science
and Engineering Research Council provided financial support for much of the work
described in Chapters 5 and 6.

Figure 6.1 previously appeared in ‘From Cells to Atoms’, by A.R. Rees and
M.J.E. Sternberg, Blackwell Scientific Publications, 1984. We are also indebted to
Graham Kemp who contributed figure 6.4, the protein modeling schema shown in
Section 6.6.2, and the P/FDM Daplex grammar in Appendix 1.

¥361253

Contents i

Introduction xi

1 Overview of semantic data modeling 1

1.1 Preliminary definitions 2
1.2 Development of the conceptual model 3
1.3 Classical data models 4
1.3.1 Conceptual data modeling using classical data models §
1.4 Semantic data models 6
1.4.1 Entities 7
1.4.2 ldentification of entities 7
1.4.3 Entity types 8
1.4.4 Type hierarchy 9
1.4.5 Attributes and domains
1.4.6 Relationships 10
1.4.7 Entity types, attributes, relationship types 10
1.4.8 Time 11
1.4.9 Rules 11
1.4.10 Semantic data modeling and knowledge representation 14
1.4.11 Semantic data modeling and object-oriented database
systems 15
1.5 A brief survey of selected semantic data models 16
1.5.1 Extensions of classical data models 16
1.5.2 Other data models 18
1.6 Conclusions 22

vi

CONTENTS

The extended functional data model as a semantic data
model 23
2.1 Introduction 23
2.2 Structures 24
2.2.1 Entity types 25
2.2.2 Functions 26
2.2.3 Type hierarchy 27
2.2.4 Entity diagram 27
2.2.5 Semantic expressiveness of functional schemas 27
2.3 Operations 29
2.3.1 Data selection and retrieval 29
2.3.2 Database updating 34
2.4 Constraints 38
2.4.1 Constraints on entity identification 38
2.4.2 Constraints on entity associations 39
2.4.3 Constraints on the values of the functions 40
2.5 Derived functions 40
2.6 User views 42
2.7 Schema evolution 43
2.8 Metadata 45
2.9 Comparison with Adaplex 47
2.10 Conclusions 49

Issues in application programming and persistent
storage of entities and functions 50

3.1 Introduction 50
3.2 Application programming 50
3.3 Database programming languages 51
3.4 Persistent programming languages 53
3.4.1 Implementation of EFDM using PS-algol 57
3.5 Large-scale implementations of semantic data models 59
3.5.1 Object storage 6l
3.5.2 Transaction management 63
3.5.3 Version management 64
3.5.4 Schema evolution 65
3.6 Conclusions 65

Object-oriented programming systems and concepts 66
4.1 Overview — representing structure and behavior 66
4.2 Concepts 67

4.2.1 Classes 67

4.2.2 Metaclasses 68

CONTENTS

4.2.3 Object identity 69
4.2.4 Inheritance 69
4.2.5 Demons 71
4.2.6 Encapsulation 71
4.2.7 Dynamic binding 71
4.3 Object orientation in artificial intelligence 72
4.3.1 Prototypes 73
4.3.2 KL-ONE 75
4.3.3 Frame-based systems 76
4.4 Object-oriented programming languages 78
4.4.1 Smalltalk 78
442 CLOS 79
4.4.3 CommonObjects 80
444 C++ 8l
4.4.5 TrellisfOwl 83
4.4.6 Eiffel 84
4.5 Object-oriented programming in Prolog 84
4.5.1 Background to Prolog 85
4.5.2 Manipulating object identifiers in Prolog 89
4.5.3 Abstract data types in Prolog 90
4.5.4 The principles in practice 92
4.5.5 Comparison with deductive databases 94
4.5.6 Comparison with concurrent logic programming 95
4.6 Object-oriented databases 97
4.6.1 Iris 98
4.6.2 Orion 100
4.6.3 GemStone 101
464 0O, 102
4.6.5 Ontos 104
4.7 Summary 105
4.7.1 Representing structure 105
4.7.2 Representing behavior 106
4.7.3 Conclusions 107

Introducing object-oriented concepts to the functional
data model 108

5.1 Introduction 108

5.2 Methods and state change 110
5.2.1 Action methods 111
5.2.2 Inheritance of methods 112

5.3 Meta-descriptions for entities and functions 115
5.3.1 Descriptors for persistent data 116

vii

viii

CONTENTS

5.4 Keys for entities 118
5.4.1 Constraints on deletion and creation of entities 120
5.4.2 Loading large volumes of data 121

5.5 Encapsulation of storage details of object store and procedure
linkage 123
5.5.1 Temporary entity storage 125
5.5.2 Value entities 126

5.6 Modules as schema partitions and units of commitment 126
5.6.1 Storage of functions in modules 128
5.6.2 Extending modules 130
5.6.3 Modularization of procedures 130

5.7 High-level programming architectures using stored procedures 133
5.7.1 Frame-based architecture 133
5.7.2 Object-oriented architecture 134
5.7.3 Forward-chaining architectures 135
5.7.4 Backward-chaining architectures 136

5.8 Summary 136

P/FDM — an object-based protein modeling system 138
6.1 Introduction 138
6.2 Protein schema design 139
6.2.1 Description of protein structures 139
6.2.2 Schema for a protein OODB 142
6.2.3 Representing sequence information 144
6.2.4 Alternative sequence representation 145
6.3 Querying the database in DAPLEX 145
6.3.1 Comparison with SQL 146
6.3.2 Example queries in DAPLEX 148
6.4 Implementation by translation into Prolog 151
6.4.1 The object store and its Prolog interface 152
6.4.2 Examples of translation into Prolog 154
6.5 Optimization 156
6.5.1 General strategy 159
6.6 Complex database search and object construction 163
6.6.1 Expressing complex queries in Prolog 163
6.6.2 Use of entities in protein modeling 166
6.7 Comparison with EFDM 168
6.8 Conclusion — is P/FDM object-oriented? 170

An object-oriented database with multiple inheritance
and metaclasses 172
7.1 Object-oriented aspects 173

7.1.1 Classes, metaclasses and methods 173
7.1.2 Encapsulation 174

8

7.2
7.3

7.4

7.5

CONTENTS

Inheritance 175

Types and metadata 177

Tuples 177

Generic methods 178

Slot and method description 179

. Constraints on the characteristics of methods 180
7.1.9 Creating slots and methods 181

Example queries 182

Database aspects 184

7.3.1 Composite values and objects 184

7.3.2 Composite values 184

7.3.3 Composite objects 185

7.3.4 Constraints 187

7.3.5 Persistence 188

The role of metaclasses in ADAM 189

7.4.1 Standard metaclasses and support for default values 189
7.4.2 Using metaclasses to support keyed objects 191
7.4.3 Metaclasses for multiple storage structures 194
7.4.4 Metaclasses for multiple databases 196

7.4.5 Supporting relationship objects using metaclasses 196
Conclusions 202

NSRRI
b b pe e
ISR = NV NN

Conclusions and future directions 203

Appendix 1 DAPLEX syntax 210
Appendix 2 University database in ADAM notation 215
References 218

Index 231

ix

Overview of semantic data modeling

This chapter establishes the broad context in which the work reported in this book
fits, namely conceptual data modeling. Conceptual data modeling aims to capture
descriptions of objects and their behavior in the real world and to find structured
representations for them in the database. Thus it is concerned with the need to
understand the data and to visualize the information that it represents. It is crucial
to the effective use of database technology. Conceptual data modeling has been an
active area of database research from early 1960s, leading to a number of different
data model proposals. These efforts have resulted in a clearer understanding of
the information modeling process, captured in a concepts document from the
International Standards Organization (ISO) (van Griethuysen, 1982).

We start this chapter with some preliminary definitions and the research leading
to the three schema architecture proposals by ANSI/SPARC (American National
Standards Institute, Standards Planning and Requirements Committee) study
group. We then provide a brief discussion of the data models underlying
contemporary database management systems. Readers may find both the definitions
and the descriptions of classical data models rather terse. Most database textbooks
cover this material in much more depth than is found here (Korth and Silberschatz,
1986; Ullman, 1988; Elmasri and Navathe, 1989; Date 1990).

The rest of the chapter starts with the discussion of why classical data models are
inadequate for conceptual data modeling. We then introduce the notion of semantic
data modeling followed by a discussion of the features commonly associated with
semantic data models. We conclude the chapter with a brief survey of selected
semantic data model proposals. Similar discussion of semantic data model concepts
and a survey of selected data model proposals can be found in survey articles by

2 OVERVIEW OF SEMANTIC DATA MODELING

Hull and King (1987), Peckham and Maryanski (1988), and books by Tsichritzis
and Lochovsky (1982), and Brodie, Mylopoulos and Schmidt (1984).

1.1 PRELIMINARY DEFINITIONS

An information system is a means of supplying the information needed by an
organization. An information system receives the information, stores it, processes
it, and provides access to it at the request of the users. When information is to be
stored and processed, it needs to be coded into some descriptive form. Such coded
information is called data. A collection of data stored on a physical media is termed
a database. A database system is an information system involving four major
components: database, hardware, software, and users. Users interact with the data
in the database through a number of user interfaces.

Data as stored in a database have a certain physical organization on physical
storage media and a certain logical organization as seen at the user interface. It is
important to insulate the users from the physical aspects so that they are not
distracted by the details of physical storage and are not inconvenienced if it is
changed. A database management system (DBMS) is a general-purpose tool that
accommodates the logical structuring, physical storage, and control of data, and
provides a number of user interfaces.

An application system or an application is a part of the database system that
generates the information required to serve a specific component of an
organization, e.g., accounting. A view is a part of the database as seen by a
processing activity of the application system. For example, specific activities
concerning accounts payable, accounts receivable, etc., may each interact with a
specific part of the database.

Databases are primarily concerned with structured or formatted data, i.e., many
instances of data possess sufficient similarity to classify them into a class or
category. This makes it possible to separate the description of the data from the
actual data. The rules that the instances of a class are expected to obey are specified
once, in a schema. Hence, the schema contains the description of the data.

A data model is the primary tool for designing a database. The basic components
of such a data model include a set of rules to describe the structure and meaning
of data in a database and the atomic operations that may be performed on the data
in that database. Thus, a data model M can be defined as consisting of two parts:
a set of generating rules, G, and a set of operations, O (Tsichritzis and Lochovsky,
1982). G defines the allowable structures for the data as a set of schemas S. The
set of generating rules G can be partitioned into two parts: the structure
specification Gs and the rule specification Gr. The generators Gs generate the
categories and structures of a schema and the generators Gr generate the inferences
and the constraints associated with a schema. A schema S therefore consists of two

