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PREFACE

Gauge theory is generally recognized to provide us with the adequate picture of
the fundamental interactions. The gauge approach to the gravitation interaction
establishes two main features of gravity as a physical field.

Gravitation phenomena are described by two geometric fields. These are an
Einstein (tetrad or metric) gravitational field and a Lorentz connection. A Lorentz
connection plays the role of a gauge gravitational potential induced by a gauge
potential of fermion fields.

An Einstein gravitational field is a Higgs field which accompanies the spon-
taneous breaking of world symmetries. This spontaneous breaking takes place
because of the coexistence of the Dirac fermion matter with exact Lorentz sym-
metries and the world geometric arena. Moreover, in contrast with Higgs fields of
the Grand Unification models, Einstein gravitational field is a macroscopic Higgs
field due to the peculiarity of gauge world transformations.

This book concerns only the gauge theory of the classical gravity. In the al-
gebraic quantum theory, Higgs fields characterize nonequivalent Gaussian states
on the algebras of quantum fields. They are “fictitious” fields describing collective
phenomena. These fields fail to be quantized in the framework of the conventional
quantum field theory. The Higgs nature of gravity therefore may open the door to
many unexpected quantum effects.

Qur formulation of gauge theory uses the machinery of modern differential
geometry. Preliminary and Chapter 1 of this book are intended as an introduction
to the jet bundle formalism and to the geometric theory of classical fields. In this
book, we consider those aspects of gauge theory which explain local phenomena,
although the theory itself is formulated in global terms.



INTRODUCTION

The geometric nature of classical gravity as a metric field has been established
by Einstein’s General Relativity. Its physical feature as a Higgs-Goldstone field
corresponding to spontaneous breakdown of world symmetries is clarified owing to
the gauge reformulation of gravitation theory in fibre bundle terms. Thus, gravity
joins the unified gauge picture of the fundamental interactions.

The main problem of the gauge gravitation theory consists in that an Ein-
stein gravitational field is a metric (or tetrad) field, whereas gauge potentials are
connections. To settle this dilemma, many authors attempted to use the seem-
ing identity of the tensor ranks of tetrad functions A% and gauge potentials o}, of
the translation subgroup of the Poincaré group (Section 4.1). They lost sight of
Higgs-Goldstone fields appearing in gauge models due to spontaneous symmetry
breaking. Moreover, the standard Yang-Mills scheme of gauge theory based on re-
placing global symmetries by the local ones appeared to be unsatisfactory for gauge
theory of world symmetries. For instance, the holonomic transformations fail to be
reproduced in this way. Besides, there are different types of gauge transformations
(atlas transformations, principal morphisms, gauge freedom transformations etc.)
which the conventional gauge principle fails to discern.

We therefore are based directly on the fibre bundle reformulation of classical
field theory (Section 1.1). The necessary mathematical machinery can be ex-
hausted by references [KOB, SUL, SAU, MAN 1991].

In bundle terms, classical fields are described by sections ¢ of some differentiable
bundle E over a world manifold X. To construct differential operators and field
Lagrangians one may use the jet bundle formalism. In its framework, a Lagrangian
density £ of fields ¢ is defined on the 1-jet manifold J'E of the bundle E. Elements
of J'E are equivalence classes jl¢ of sections ¢ possessing the same values ¢(z)
and the same values of their first derivatives 8,¢(z) at z € X. Given the world
coordinates (z#) on X and the bundle coordinates (z*, y') on E, the jet manifold
J'E of the bundle E is endowed with the so-called adapted coordinates

(=}, v, 93) 0 5'¢ = (2%, ¢'(2), Ord'(2)).

The jet manifold plays the role of a finite-dimensional configuration space of clas-
sical fields ¢.

The corresponding finite-dimensional momentum space of fields ¢ is represented
by the Legendre manifold II provided with the so-called standard coordinates

(z*,y*,p}) (Section 1.3). Given a Lagrangian density £, we have the Legendre
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morphism
(@ 5%, 33) = (24,9, 9} = 8} L).

and the multimomentum Hamltonian
H(z*,y',p}) = plvs — L.

Let us remark that, in the multimomentum Hamiltonian formalism, time and
spatial coordinates are considered on the same footing and so, this machinery does
not require the preliminary (3+1) decomposition of a world manifold.

The jet bundle formalism enables us to manipulate general connections defined
as sections I' of the bundle J'E — E. Principal connections keep their physical
importance because, to construct a gauge invariant Lagrangian, one must reduce
the bundle E to the one associated with some principal bundle. We use general
connections in the models of spontaneous symmetry breaking and in the multimo-
mentum Hamiltonian formalism. For instance, there is the canonical splitting of a
multimomentum Hamiltonian

H=pTiy) +H

where T' is some general connection on the bundle E.

In fibre bundle form, the gauge principle is reduced to the natural requirement
of Lagrangians (or multimomentum Hamiltonians) be invariant under transforma-
tions of the adapted coordinates on the configuration space J'E (or the standard
coordinates on the Legendre bundle IT). Such coordinates are induced by atlases of
the bundle E and the tangent bundle TX over a world manifold X. In field theory,
these atlases define internal and world reference frames. The gauge principle thus
makes the sense of a relativity principle.

To construct a gauge invariant Lagrangian, one needs a metric a¥ in fibres of
the bundle E and a world metric g in fibres of the cotangent bundle T*X. By
gauge transformations, a fibre metric a¥ can be always brought into a canonical
form invariant under a structure group G of the bundle E. In contrast with af,a
world metric g takes a canonical form 7 only with respect to nonholonomic atlases
of T*X in general and 7 is invariant only under some subgroup of world symmetries.
It means that, in gauge theory of world symmetries there is a dynamic metric field
besides a gauge potential I'.

The relativity principle however does not require ¢ be a pseudo-Riemannian
metric and T be a gauge potential of the Lorentz group. One therefore needs a
supplementary principle besides the gauge one in order to reduce gauge theory of
world symmetries to the gauge gravitation theory. This is the equivalence principle.

In Einstein’s General Relativity, the equivalence principle is called to guarantee
the transition to the Special Relativity with respect to some reference frames.
There exist various formulations of this principle. Most of them are corollaries
of geometrization of a gravitational field by components of a pseudo-Riemannian
metric. The equivalence principle that we need must result in the existence of



a pseudo-Riemannian metric itself. In geometric terms, we have formulated this
principle as follows [IVA 1983].

In the Minkowski space, a time coordinate parameterizes the set of events
ordered by the genetic relations. Lorentz transformations describe the transforma-
tions of these relations under changing a reference frame. In the spirit of Klein’s
Erlanger program, the Minkowski space geometry can be characterized as the ge-
ometry of Lorentz invariants. The geometric equivalence principle then postulates
that, with respect to some reference frames, Lorentz invariants can be defined ev-
erywhere on a world manifold X* and are preserved by parallel displacement. This
principle has the adequate fibre bundle formulation. It requires that the principal
linear frame bundle LX with the structure group

GL, = GL4,R)
be reduced to some subbundle L* X with the structure Lorentz group
L=50(3,1)

and so, that a gravitational field A exist on a world manifold X* (Section 2.2).
There is 1:1 correspondence between the reduced L-subbundles L* X and the tetrad
gravitational fields h represented by global sections of the LX-associated Higgs
bundle ¥ with the standard fibre GLs/L. This bundle is isomorphic to the 2-fold
covering of the bundle A of pseudo-Riemannian forms in cotangent spaces T; X to
X4 A global section of A is a pseudo-Riemannian metric ¢ on X*. The geometric
equivalence principle thereby provides X* with the so-called L-structure {SUL].
This means the following.

A principal connection I'* on the linear frame bundle LX is assumed to be an
extension of some connection A on the reduced subbundle L"X. A world manifold
X* is a pseudo-Riemannian space with the metric g corresponding to the reduced
subbundle L*X. Atlases of L*X are extended to the atlases ¥" of LX possessing
Lorentz transition functions. With respect to ¥*, metric functions of g are reduced
to the Minkowski metric n and the local connection form I'* takes its values in the
Lie algebra of the Lorentz group, that is, its coefficients represent components of
a Lorentz gauge potential. We call I'* a Lorentz connection. It plays the role of a
gauge gravitational potential. There is the canonical splitting of I'* in the sum

r"={}+85.

of the Christoffel symbols { } of the metric ¢ and the contortion form S. The gauge
gravitation theory thereby is the theory of gravity with torsion in general [HEL,
IVA 1983, OBU].

The geometric equivalence principle defines some space-time structure on a
world manifold X* (Section 2.3). For every reduced subbundle L"X, there exist
reduced subbundles L¥ X of LX with the structure group SO(3) C L. There is
1:1 correspondence between these subbundles and the smooth distributions F of
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3-dimensional spatial subspaces of tangent spaces T, X. Such a distribution yields
the (3+1) decomposition of the tangent bundle T'X over X* into the direct sum
of the 3-dimensional spatial subbundle F and its time-like orthocomplement 7°X.
This decomposition turns a world manifold into a space-time. In particular, some
types of gravitation singularities can be described as singularities of space-time
distributions.

The geometric equivalence principle singles out the Lorentz group as the exact
symmetry subgroup of world symmetries broken spontaneously. The corresponding
Higgs-Goldstone field is a classical metric (or tetrad) gravitational field.

Spontaneous symmetry breaking is the quantum phenomenon. It takes place if,
given a symmetry group G and its subgroup H, a Gaussian state F' on an algebra
of matter fields is H-stable and nonequivalent to any G-stable state [SAR’]. There
are two types of spontaneous symmetry breaking:

(i) States Fg, ¢ € G, are equivalent to F.

(ii) States Fyg, g € G, are nonequivalent to F, e.g., if matter fields possess only
the exact symmetry group H.

Spontaneous breaking of world symmetries belongs to the type (ii). The cor-
responding matter fields are Dirac fermion fields on which the Clifford algebra. of
Dirac’s y-matrices and the Dirac operator act. There are various spinor models of
the fermion matter. For instance, infinite-dimensional representations of the group
SL{4,R) are examined [NEE 1985] and, in this case, the above-mentioned spon-
taneous breakdown of world symmetries takes no place. All observable fermion
particles however are Dirac fermions.

Let E be a spinor bundle whose sections describe classical Dirac fermion fields
# on a world manifold X*. There is an associated bundle Eps of Minkowski spaces
with the structure Lorentz group so that the bundle morphism

ve: EM®E - FE

exists and defines representation of elements of Ejs by Dirac’s y-matrices on el-
ements of £. To define the Dirac operator on sections of E, one must require
Ep be isomorphic to the cotangent bundle 7* X over a world manifold X*. Since
the structure group of T*X is GLs, it takes place only if there is some reduced
L-subbundle L*X of the linear frame bundle LX and Ejs is associated with L*X,
that is, if the geometric equivalence principle holds. The cotangent bundle 7" X
provided only with atlases ¥* possesses the structure of the Minkowski space bun-
dle M*X associated with the reduced subbundle L*X. For different tetrad fields A
and ¥, bundles M"X and M" X are not isomorphic to each other. Their fibres M,
and M’ are cotangent spaces 77X, but provided with different Minkowski space
structures.

The peculiarity of gravitational field thus is clarified. In contrast to the other
fields, a tetrad gravitational field itself defines reference frames and these reference
frames corresponding to different gravitational field are nonequivalent in a sense.



Let the Minkowski space bundle Ejs associated with a spinor bundle E be
isomorphic to the bundle
T°X = M*X.
Then, one can define the representation

y: M*X ® E — E,
m(dz") = he(z)y*

of cotangent vectors to X* (that is, 1-forms) by Dirac’s y-matrices on sections of a
spinor bundle E. We denote such a spinor bundle (endowed with the representation
morphism «,) by E* (Section 2.2). Sections of E* describe Dirac fermion fields ¢,
in the presence of the tetrad gravitational field .

Moreover, each principal connection A, on the spinor bundle E* induces a
certain principal connection A on the reduced subbundle L*X of LX and A is
uniquely extended to a Lorentz connection I'* on the linear frame bundle LX.
In other words, gauge potentials A, of fermion fields generate gauge gravitational
potentials.

The Higgs character of gravity issues from the fact that different gravitational
fields A and A’ define the nonisomorphic representations v; and . . It follows that
Dirac fermion fields must be considered only in a pair with a certain gravitational
field. These pairs fail to be represented by sections of the bundle product ¥ x E
of the Higgs bundle ¥ and some spinor bundle E, but form sui generis a fermion-
gravitation complex (Section 3.1). To describe this complex, we use the fact that
the total space P of the principal bundle LX represents the total space of the
L-principal bundle P% over the Higgs manifold

%= P/L.

The Higgs manifold ¥ is parameterized both by coordinates z# of a world manifold
X* and by values o which tetrad gravitational fields take in the quotient space
GLy/L. The manifold ¥ is the finite-dimensional analogue of the Wheeler-DeWitt
superspace in a sense.

Let EX — ¥ be a spinor bundle associated with P*. Fermion-gravitation pairs
can be represented by sections of the composite bundle

E=E:oyoXx

over X. This bundle however is not associated with a principal bundle and so, does
not admit a principal connection. To define a connection on E, one uses principal
connections on the bundles ¥ and P’ and the canonical jet bundle morphism

J'T x JIEL o E.

As a result, covariant derivatives of fermion fields include the additional term due
to parallel displacement along the coordinates ¢* of the Higgs bundle Z.
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Since, for different gravitational fields h and h', the representations 5, and
Yn+ are not isomorphic, tetrad gravitational fields, unlike matter fields and gauge
potentials, fail to form a linear space or an affine space modelled on a linear
space of deviations from some background field. They thereby do not satisfy the
superposition principle and can not be quantized by usual methods because, in
accordance with the conventional quantum field theory, fields must form a linear
space in order to be quantized.

This is the common feature of Higgs fields. In algebraic quantum field theory,
different Higgs fields correspond to nonequivalent Gaussian states on an algebra of
matter fields. Quantized deviations of a Higgs field can not change a Gaussian state
of this algebra, and so fail to result in some new Higgs field. A Higgs field thereby
is a classical field. If one considers its small classical deviations being superposable
in some approximation, their quantums turn out to be quasi-particles, not true
particles.

A classical tetrad gravitational field as a Higgs field also is “fictitious” in a
sense. 1t describes a field of invariance relations which is preserved by parallel
displacement. For instance, a momentum part of the multimomentum Hamilto-
nian form for the classical gravity is reduced only to the connection term. Thus,
quantization of tetrad (metric) gravitational fields goes beyond the framework of
the standard quantum field theory.

At the same time, one can examine superposable deviations o of a tetrad grav-
itational field k such that

h+o

is not a tetrad gravitational field (Section 3.2). For instance, they do not change
atlases ¥* and the world metric g. These deviations are generated by non-Lorentz
transformations of fibres of 7*X and thereby violate the isomorphism between Fjs
and 7" X. Such transformations look like deformations of a world manifold in the
gauge theory of space-time translations (Section 4.2). A Lagrangian of superpos-
able deviations ¢ differs from the familiar Lagrangians of gravitation theory. For
instance, contains the mass-like terms.

In other words, the superposable deviations o of a tetrad gravitational field
can destroy the correlation between the Dirac fermion matter and the space-time
geometric arena. At the same time, if world symmetries are not broken (e.g., there
are no fermion fields), transmutations of h + & into a new gravitational field A’ may
take place and may be accompanied by violation of the usual energy conservation
law.

In the Grand Unification models, appearance of a Higgs field is usually related
to a phase transition. A gravitational field also might arise owing to some primary
phase transition which had separated prematter and pregeometry.



PRELIMINARY

We assume that all morphisms are smooth (that is, of class C*) and manifolds
are real, Hausdorff, finite-dimensional, and second-countable (as a consequence,
paracompact). Unless otherwise stated, structure groups of bundles are real finite-
dimensional Lie groups.

By A, we denote exterior product (i.e., skew-symmetric tensor product} of
cotangent vectors.

Interior product (pairing) of tangent vectors with cotangent vectors is denoted

by .

0.1 Bundles

By a bundle, we mean a locally trivial fibre bundle
7+ E—> B
whose total space £ and base B are manifolds. For the sake of simplicity, we
denote a bundle by its total space symbol E.

We use y and z in order to denote points of E and B respectively.
Given a bundle £ and another bundle

. E' = B,
a bundle morphism of E to E’ is defined to be a pair of manifold morphisms
®: F - F, dp5: B— B

such that
mo®==>0gzom.

One says that @ is a bundle morphism over ®5. If
&g =id B,

then & is called a bundle morphism over B.
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Let E and E’ be bundles over the same base B. We denote their bundle product
over B by

E X E'.
There are two bundle projections
pry: E X E'— E, pry: E X E'— E'.
Given a bundle £ and a manifold morphism
o5: B' — B,
the pull-back of E by ®p is defined to be the bundle
OLE = {(y,2) € E x B'; n(y) = ®5(z)}
with the base B’ and projection
oy (y,2') — 2'.
In particular, each section e of E yields the pull-back section
Ppe(z’) = (e(®p(z"), )
of ®3E. There is the bundle morphism
& 5: ®LE > (y,2') 2y € E. (0.1)
We provide a bundle £ with local bundle coordinates

(z,y), 1< A <n=dimB,
1<i<]=dimF ~dimB,
which are compatible with the bundle fibration of E, that is,

pr, o (2%, y') =zt o .

In particular, if
¥ = {Un,thr 771 (Ui) = Ui % F}

is a bundle atlas of E, coordinates y' on E can be induced by coordinates v* on a
standard fibre F of the bundle E:

¥ = v 0t (0.2)

We call coordinates (0.2) the bundle coordinates associated with an atlas ¥.
In field theory, one is usually concerned with bundles possessing additional
algebraic structure.
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A group bundle is defined to be a bundle E together with canonical bundle
morphisms m and & over B and a global section ez of E:

m: Ex E— E,
B

k: E— E,
eg: B— E. (0.3)

They make each fibre
E, = 7 Yz)

of the bundle F into a Lie group:

m(ep(z),y) = m(y,ep(x)) =y,
m(k(y),y) = m(y, k(y)) = ex(z), y € E..

For instance, a vector bundle E possesses the structure of an additive group
bundle. In this case, eg is the canonical zero section of E.

A general affine bundle is defined to be a triple (E, E',7) of a bundle E, a group
bundle £’ over B, and a bundle morphism

m EXE - E
B

which makes each fibre E, of E into a general affine space with the associated
group E/ acting freely and transitively on F,.

In particular, if a group bundle is a vector bundle E, a general affine bundle is
called an affine bundle modelled on a vector bundle E:

re: E gf% E,
re: (,9) —y+7.

For instance, every vector bundle E can be provided with the canonical structure
of an affine bundle (of translations in E) modelled on E by means of the morphism

re: (y,y) —y+y.

A principal bundle P — B with a structure group G is defined to be a general
affine bundle with respect to the trivial group bundle B x G where the group G
acts on P on the right:

rge P — Pg, geG. (0.4)

A standard fibre of a principal bundle P is its structure group G which acts on
itself on the left. Fibres of P are diffeomorphic to the group space of &, but fail
to be groups.

A principal bundle P is a general affine bundle also with respect to the principal
group bundle P. This is the P-associated bundle with the standard fibre G on
which the structure group acts by the adjoint representation

adg: G — gGg™1, g € G.
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Fibres of P are groups isomorphic (but not canonically isomorphic) to the structure
group G. Moreover, for any P-associated bundle E, the canonical bundle morphism

Pg: E x P E (0.5)
is defined.
Remark. Given a principal bundle~
np: P — B

with a structure group G, a total space of a P-associated bundle E with a stan-
dard fibre F is defined to be the quotient (P x F)/G of the product P X F by
identification of elements (p,v) and (pg,g~'v) for all g € G. A global section e of
E then is determined by a F-valued equivariant function f. on P such that

e(”P(p)) = [p]Ffe(p), pe P, _
fe(pg) = 97" fe(P)s g€G,

where [p] denotes the restriction of the canonical map
PxF—E

to the subset p x F.

Let (Ei, Ei,r) and (E;, Ej,r;) be general affine bundles. An affine bundle
morphism E; — E, is a pair of bundle morphisms

o By — E,, & E, - E,
such that
ra0(®,¢Y=dor,.

For instance, let P — B and P’ — B’ be principal bundles with a structure
group G. Then, an affine bundle morphism of P to P’ is defined to be a G-
equivariant bundle morphism

(®,8' = (¢5,id G))

over a manifold morphism
(I)B: B — BI

such that, whenever g € G5,
r; o®=%or,.
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Every principal isomorphism of a principal bundle P (over the identity mor-
phism of its base B) is expressed as

®p(p)=pfs(p), PEDP, (0.6)
f:(p9)=97"f.(p)g, 9€G,

where f, is a G-valued equivariant function on P corresponding to some global
section s of the principal group bundle P. Principal isomorphisms thus form the
gauge group G(B) which is canonically isomorphic to the group of global sections
of the bundle P.

Remark. There is no canonical embedding of G into G(B) even if P is a trivial
bundle. Elements of G(B) take their values in fibres of the group bundle P, but
not in its standard fibre G.

Given a P-associated bundle E with a standard fibre F, every principal iso-
morphism (0.6) yields the associated principal morphism

dp: (P x F)/G — (®8p(P) x F)/G (0.7)

of the bundle E so that R
g = Pelexgs(B)-

Given affine bundles E and E’ modelled on vector bundles £ and E’ respec-
tively, a bundle morphism
o: E— F

is affine if there exists a linear bundle morphism
¢ E—-E
satisfying the following condition
rp 0 (®,0)=®org.
This linear bundle morphism @ is called the fibred derivative of ®:
o(y) + 3() = 2" +7). (0.8)

Let E be a vector bundle. Bundle coordinates (z*,y*) on F are called linear if
functions y* are linear on each fibre.

Let E be an affine bundle modelled on a vector bundle E. Bundle coordinates
(z*,9") on E are called affine if functions y* are affine on each fibre. By taking
their fibred derivatives, one obtains the linear bundle coordinates (z*,%') on E:

7@ =v'y+7 -y ).
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If F is a vector bundle provided with the canonical structure of an affine bundle,
we have
y'(y) =7'(y).

Henceforth, when we deal with a vector bundle and an affine bundle modelled
on a vector bundle, we shall refer to the linear bundle coordinates and to the affine
bundle coordinates respectively.

Let us note that additional algebraic structure puts constraints on a bundle
E. For instance, a bundle £ with a standard fibre F' can be regarded as a bundle
with the structure group Diff F' of all diffeomorphisms of F. If F is assumed to be
associated with a G-principal bundle P, it means that the structure group Diff F
of E is reducible to G and that only atlases of £ associated with atlases of the
principal bundle P are allowed. One must discern affine bundles and affine bundles
with an affine structure group. Jet bundles described in Section 0.2 exemplify affine
bundles which are not associated with an affine principal bundle.

Remark. Given a principal bundle P and a P-associated bundle E, we say
that a bundle atlas

v = {U,,¢F}
of P and a bundle atlas
Y= ‘{Urc:1/)n}

of E are associated atlases if they are determined by the same family {z.(z),z €
U, } of local sections of P, that is,

¥l (2s(2)) = 1a,

¢ﬂ(‘r) = [zﬁ(z)];‘la WP(P) =z € Um

2:(p) = 2. (P)pun(7p(P)), 7r(p)=2€ U UU,,

pru(z) = (2}, 7 (2)
Here, pr, are G-valued transition functions of atlases ¥F and ¥ and 1¢ is the unit
element of the group G. By v,(z), we denote the morphism pr, o ¥, restricted to
a fibre 7~ '(z): .

VYu(z): 77 Y(z) = F.

The tangent bundle over a bundle E possesses additional structure which is the
vertical subbundle.

Remark. Given the tangent bundle
au: ITM - M

and the cotangent bundle 7* M over a manifold M, we denote the familiar induced
coordinates on TM and T*M by (z*,3*) and (z*, £,) respectively. Here, 2* and
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z) are the coordinates on fibres T, M and T M with respect to their holonomic
bases {8,} and {dz*}. Let
b M- N

be a manifold morphism. It gives rise to the following linear bundle morphism over
o:
b TM - TN,

o
az+

¢.. o, —

4
al/’

which is called the tangent morphism to ®.

Given a bundle E, we have the tangent bundle
7g: TE - E

and the bundle
n,. TE — TB.

Given the bundle coordinates (z*,y*) on E, the induced coordinates on T E are
(@ v, 2%, 9).
The vertical bundle over a bundle F is defined to be the subbundle
VE =kerw. C TE.
The induced bundle coordinates on VE are
(=, y,3").
We have the following exact sequence of tangent bundles over E:

0—+VE——>TE—>E§TB—>0 (0.9)

where

ExTB=r"(TB)

is the pull-back of the tangent bundle TB by =. For instance, a bundle morphism
® of a bundle F to E' gives rise to the vertical tangent morphism

Vo = (D,.IVE: VE — VE,

of the vertical bundle VE to VE'.



