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Preface

The 17th International Workshop on Languages and Compilers for High Per-
formance Computing was hosted by Purdue University in September 2004 on
Purdue campus in West Lafayette, Indiana, USA. The workshop is an annual
international forum for leading research groups to present their current research
activities and the latest results, covering lé,nguages, compiler techniques, run-
time environments, and compiler-related performance evaluation for parallel
and high-performance computing. Eighty-six researchers from Canada, France,
Japan, Korea, P. R. China, Spain, Taiwan and the United States attended the
workshop.

A new feature of LCPC 2004 was its mini-workshop on Research-Compiler
Infrastructures. Representatives from four projects, namely Cetus, LLVM, ORC
and Trimaran, gave a 90-minute long presentation each. In addition, 29 research
papers were presented at the workshop. These papers were reviewed by the pro-
gram committee. External reviewers were used as needed. The authors received
additional comments during the workshop. The revisions after the workshop are
now assembled into these final proceedings.

A panel session was organized by Samuel Midkiff on the question of “What is
Good Compiler Research — Theory, Practice or Complexity?” The workshop also
had the honor and pleasure to have two keynote speakers, Peter Kogge of the
University of Notre Dame and David Kuck of Intel Inc., both pioneers in high
performance computing. Peter Kogge gave a presentation titled “Architectures
and Execution Models: How New Technologies May Affect How Languages Play
on Future HPC Systems”. David Kuck presented Intel’s vision and roadmap for
parallel and distributed solutions.

The workshop was sponsored by the National Science Foundation and by
International Business Machines Corporation. Their generous contribution is
greatly appreciated. We wish to acknowledge Purdue’s Office for Continuing
Education and Conferences, Thomas L. Robertson in particular, for their as-
sistance in organizing the workshop. Eighteen graduate students affiliated with
Purdue’s Advanced Computer Systems Laboratory (ACSL) volunteered their
time to assist in the workshop’s operations. Our special thanks go to the LCPC
2004 program committee and the nameless external reviewers for their efforts in
reviewing the submissions. Advice and suggestions from both the steering com-
mittee and the program committee have helped the smooth preparation of the
workshop. Finally, we wish to thank all the authors and participants for their
contribution and lively discussions which made the workshop a success.

May 2005 Rudolf Eigenmann, Zhiyuan Li, Samuel P. Midkiff
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Experiences in Using Cetus
for Source-to-Source Transformations*

Troy A. Johnson, Sang-lk Lee, Long Fei, Ayon Basumallik,
Gautam Upadhyaya, Rudolf Eigenmann, and Samuel P. Midkiff

School of Electrical & Computer Engineering,
Purdue University, West Lafayette IN 47906, USA
{troyj, sangik, 1lfei, basumall, gupadhya, eigenman,
smidkiff }Qecn.purdue.edu
http://www.ece.purdue.edu/ParaMount

Abstract. Cetus is a compiler infrastructure for the source-to-source
transformation of programs. Since its creation nearly three years ago, it
has grown to over 12,000 lines of Java code, been made available pub-
lically on the web, and become a basis for several research projects.
We discuss our experience using Cetus for a selection of these research
projects. The focus of this paper is not the projects themselves, but
rather how Cetus made these projects possible, how the needs of these
projects influenced the development of Cetus, and the solutions we ap-
plied to problems we encountered with the infrastructure. We believe the
research community can benefit from such a discussion, as shown by the
strong interest in the mini-workshop on compiler research infrastructures
where some of this information was first presented.

1 Introduction

Parallelizing compiler technology is most mature for the Fortran 77 lan-
guage [1,3,12,13,16]. The simplicity of the language without pointers or user-
defined types makes it easy to analyze and to develop many advanced compiler
passes. By contrast, parallelization technology for modern languages, such as
Java, C4++, or even C, is still in its infancy. When trying to engage in such
research, we were faced with a serious challenge. We were unable to find a paral-
lelizing compiler infrastructure that supported interprocedural analysis, exhib-
ited state-of-the-art software engineering techniques to help shorten development
time, and allowed us to compile large, realistic applications. We feel these prop-
erties are of paramount importance because they enable a compiler writer to
develop “production strength” passes. Production strength passes, in turn, can
work in the context of the most up-to-date compiler technology and lead to
compiler research that can be evaluated with full suites of realistic applications.
The lack of such thorough evaluations in many current research papers has been

* This material is based upon work supported in part by the National Science Foun-
dation under Grant No. 9703180, 9975275, 9986020, and 9974976.

R. Eigenmann et al. (Eds.): LCPC 2004, LNCS 3602, pp. 1-14, 2005.
© Springer-Verlag Berlin Heidelberg 2005



2 T.A. Johnson et al.

observed and criticized by many. The availability of an easy-to-use compiler in-
frastructure would help improve this situation significantly. Hence, continuous
research and development in this area are among the most important tasks of
the compiler community.

Cetus was created with those needs in mind. It supports analyses and trans-
formations at the source level; other infrastructures are more appropriate for
instruction-level compiler research. Cetus is composed of over 10,000 lines of
Java code that implements the Cetus intermediate representation (IR), over
1,500 lines of code that implements source transformations, a C parser using
Antlr, and standalone C and C++ Bison parsers that have yet to be integrated
completely into Cetus. The Cetus IR is the product of three graduate students
working part-time over two years. Several others have contributed analysis and
transformation passes, as well as used Cetus for their own research projects. We
discuss these projects in this paper from the perspective of how Cetus made
these projects possible, how the needs of these projects influenced the develop-
ment of Cetus, and the solutions we applied to problems we encountered with
the infrastructure. We believe the research community can benefit from such a
discussion, as shown by the strong interest in the mini-workshop on compiler
research infrastructures where some of this information was first presented.

Section 2 briefly covers the Cetus IR. In Section 3, we cover basic analysis,
transformation, and instrumentation passes. Section 4 contains five case studies
of more complex passes. Section 5 discusses the effects of user-feedback on the
project. Finally, Section 6 concludes.

2 Cetus Intermediate Representation

For the design of the IR we chose an abstract representation, implemented in
the form of a class hierarchy and accessed through the class member functions.
We consider a strong separation between the implementation and the interface
to be very important. In this way, a change to the implementation may be done
while maintaining the API for its users. It also permits passes to be written
before the IR implementation is ready. These concepts had already proved their
value in the implementation of the Polaris infrastructure [2], which served as
an important example for the Cetus design. Polaris was rewritten three to four
times over its lifetime while keeping the interface, and hence all compilation
passes, nearly unmodified [5]. Cetus has a similar design, shown in Figure 1,
where the high-level interface insulates the pass writer from changes in the base.

Our design goal was a simple IR class hierarchy easily understood by users.
It should also be easy to maintain, while being rich enough to enable future
extension without major modification. The basic building blocks of a program
are the translation units, which represent the content of a source file, and proce-
dures, which represent individual functions. Procedures include a list of simple
or compound statements, representing the program control flow in a hierarchical
way. That is, compound statements, such as IF-constructs and FOR-loops in-
clude inner (simple or compound) statements, representing then and else blocks
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Fig. 1. Cetus components and interfaces: Components of Cetus only call methods of
the components beneath them. The driver interprets command-line arguments and
initiates the appropriate parser for the input language, which in turn uses the high-
level interface to build the IR. The driver then initiates analysis and transformation
passes. Normalization passes and utilities are provided to perform complex operations
that are useful to multiple passes. The interface functions are kept lean and generally
provide only a single way of performing IR manipulations

or loop bodies, respectively. Expressions represent the operations being done on
variables, including the assignments to variables.

Cetus’ IR contrasts with the Polaris Fortran translator’s IR in that it uses a
hierarchical statement structure. The Cetus IR directly reflects the block struc-
ture of a program. Polaris lists the statements of each procedure in a flat way,
with a reference to the outer statement being the only way for determining the
block structure. There are also important differences in the representation of ex-
pressions, which further reflects the differences between C and Fortran. The Po-
laris IR includes assignment statements, whereas Cetus represents assignments in
the form of expressions. This corresponds to the C language’s feature to include
assignment side effects in any expression.

The IR is structured such that the original source program can be reproduced,
but this is where source-to-source translators face an intrinsic dilemma. Keeping
the IR and output similar to the input will make it easy for the user to recognize
the transformations applied by the compiler. On the other hand, keeping the IR
language-independent leads to a simpler compiler architecture, but may make it
impossible to reproduce the original source code as output. In Cetus, the concept
of statements and expressions are closely related to the syntax of the C language,
facilitating easy source-to-source translation. The correspondence between syn-
tax and IR is shown in Figure 2. However, the drawback is increased complexity
for pass writers (since they must think in terms of C syntax) and limited ex-
tensibility of Cetus to additional languages. That problem is mitigated by the
provision of several interfaces that represent generic control constructs. Generic
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Fig. 2. A program fragment and its IR in Cetus. IR relationships are similar to the
program structure and a symbol table is associated with each block scope

passes can be written using the abstract interface, while more language-specific
passes can use the derived classes. For example, the classes that represent for-
loops and while-loops both implement a loop interface. A pass that manipulates
loops may be written using the generic loop interface if the exact type of loop is
not important.

The high-level interface, or IR-API, is the interface presented to compiler
writers. In general the IR-API is kept minimal and free of redundant function-
ality, so as to make it easy to learn about its basic operation and easy to debug.
IR-API calls expect the IR to be in a consistent state upon entry and ensure
the state is consistent upon their return. Cetus also provides a utility package,
that offers convenience to pass writers. The utility package provides additional
functions, where needed by more than a single compiler pass. Obviously, this
criterion will depend on the passes that will be written in the future. Hence,
the utilities will evolve, while we expect the base to remain stable. The utility
functions operate using only the IR-APL.

2.1 Navigating the IR

Traversing the IR is a fundamental operation that will be used by every com-
piler pass. Therefore, it is important that traversals be easy to perform and
require little code. Cetus provides an abstract IRIterator class that implements
the standard Java Iterator interface. The classes BreadthFirstIterator, Depth-
FirstIterator, and FlatlIterator are all derived from IRIterator. The constructor
for each of these classes accepts as its only parameter a Traversable object which
defines the root of the traversal. Traversable is an interface that ensures any im-
plementing class can act as a node of a tree by providing methods to access its
parent and children. A design alternative here was to have every class provide a
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getlterator method instead of passing the root object to an iterator constructor,
but that required adding an implementation of getlterator to every class, and
was rejected.! The DepthFirstIterator visits statements and expressions sequen-
tially in program order without regard to block scope. The BreadthFirstIterator
visits all children of an object before visiting the children’s children; i.e., block
scope is respected with outer objects visited first. The Flatlterator does not
visit the root of the traversal and instead visits the root’s children sequentially
without visiting the children’s children.

In addition to providing a next method, as all Iterators must, an IRIterator
provides next(Class), next(Set), and nextExcept(Set) to allow the caller
to specify that only objects of a certain class, or that belong or do not belong
to a particular set of classes, are of interest. When these methods were first
introduced, we were able to rewrite older Cetus passes using considerably fewer
lines of code. Figure 3 shows the usefulness of these methods.

/* Look for loops in a procedure. Assumes proc is a Procedure object. */

BreadthFirstIterator iter = new BreadthFirstIterator(proc);

try {
while (true)

Loop loop = (Loop)iter.next(Loop.class);
// Do something with the loop

}

} catch (NoSuchElementException e) {

}

Fig. 3. Using iterators to find loops within a procedure. Outer loops are discovered
first

2.2 Type System and Symbol Table

Modern programming languages provide rich type systems. In order to keep
the Cetus type system flexible, we divided the elements of a type into three
concepts: base types, extenders, and modifiers. A complete type is described
by a combination of these three elements. Base types include built-in primitive
types, which have a predefined meaning in programming languages, and user-
defined types. User-defined types are new types introduced into the program by
providing the layout of the structure and the semantics. These include typedef,
struct, union, and enum types in C. Base types are often combined with type
extenders. Examples of type extenders are arrays, pointers, and functions. The
last concept is modifiers which express an attribute of a type, such as const
and volatile in C. They can decorate any part of the type definition. Types

! The decision was primarily due to Java’s lack of multiple inheritance, since in most
cases inheritance had already been used.



6 T.A. Johnson et al.

are understood by decoding the description one element at a time, which is a
sequential job in nature. We use a list structure to hold type information so that
types can be understood easily by looking at the elements in the list one at a
time.

Another important concept is a symbol, which represents the declaration of a
variable in the program. Symbols are not part of the IR tree and reside in symbol
tables. Our concept of a symbol table is a mapping from a variable name to its
point of declaration, which is located in a certain scope and has all of the type
information. As a result, scope always must be considered when dealing with
symbols. In C, a block structure defines a scope. Therefore, structs in C are also
scopes and their members are represented as local symbols within that scope.
A compiler may use one large symbol table with hashing to locate symbols [4].
In Cetus, since source transformations can move, add, or remove scopes, we
use distributed symbol tables where each scope has a separate physical symbol
table. The logical symbol table for a scope includes its physical symbol table
and the physical symbol tables of the enclosing scopes, with inner declarations
hiding outer declarations. There are certain drawbacks to this approach, namely
the need to search through the full hierarchy of symbol tables to reach a global
symbol [6], but we find it to be convenient. For example, all the declarations in a
scope can be manipulated as a group simply by manipulating that scope’s symbol
table. It is especially convenient in allowing Cetus to support object-oriented
languages, where classes and namespaces may introduce numerous scopes whose
relationships can be expressed through the symbol table hierarchy.

3 Capabilities for Writing Passes

Cetus has a number of features that are useful to pass writers. Classes that
support program analysis, normalization, and modification are discussed below.

3.1 Analysis

Call Graph. Cetus provides a CallGraph class that creates a call graph from
a Program object. The call graph maps callers to callees as well as callees to
callers. A pass can query the call graph to determine if a procedure is a leaf of
the call graph or if a procedure is recursive.

Control-Flow Graph. Cetus provides a ControlFlowGraph class, which cre-
ates a control-flow graph from a Program object. The graph represents the struc-
ture of each procedure in terms of its basic blocks connected by control-flow
edges.

3.2 Normalization

Single Return. Compiler passes often become simpler if they can assume that
each procedure has a single exit point. A procedure with multiple return state-
ments complicates such actions as inserting code that should execute just prior



