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Introduction

The importance of orthoconal matrices in modern discrete mathe-
matics and its applications is well known; for many applied problems
(for example, for construction of discrete equipments realizing fast
or orthogonal transformations) one needs consideration of integer
orthogonal matrices and in particular, orthogonal matrices with the
elements -1 and +1. Square orthogonal matrices with the elements -1
and +1 are called Hadamard matrices.

Investigations of Hadamard matrices were connected initially with
a linear algebra problems (for example, with finding maximum of deter-
minant) . Later on it turned out that the applications of Hadamard mat-
rices in questions connected with information transfer by non-line ele-
ctromagnetic waves, with automaton training and with a number of ques-
tion from information theory (information compression and noiseless
coding, optimal linear detection of a signal through noise, constru-
ction of multiple-access chanels) are also fruitful. Besides it turned
out that there are interrelations between Hadamard matrices and diffe-
rent combinatorial configurations such as block-designs, Latin squares,
orthogonal F-square configurations, correcting codes, finite geomet-
ties, strongly regular graphs. These interrelations allow to investi-
gate the properties of different objects using the analogy in their
structures.

Recently a considerable increase of investigation devoted to Ha-
damard matrices has occured. Some problems connected with (classic, ge-
neralized, high-dimensional) Hadamard matrices are still unanswered; so,
till now it is not known if there exist Hadamard matrices of order n
for all n divisible by 4.

Historically, first work devoted to Hadamard matrices was due to
Sylvester who in 1867 proposed a recurrent method for construction of

Hadamard matrices of order Zk. In XIX century the following papers



also appeared: the work of Scarpis (1898) proving that if p=3(mod 4)
or p=1(mod 4) is a prime number then there is an Hadamard matrix of
order p+1 and p+3, respectively; the work of Hadamard (1893) where

}n

the following result in particular is stated: if A={a, i,5=1"
,j=

i,3

|a IIEM' a are real numbers for any i, j, then the absoluteva-

i,3J Aoy 3

lue of determinant A 1is less or equal to Mnnn/2

Hadamard has proved
that this bound is within the reach only for Hadamard matrices. This
result gives rise to the term "Hadamard matrix".

In 1933 Paley stated that the order of any Hadamard matrix is di-
visible by 4. There are some reasons to assume that the reverse sta-
tement is also true. This problem is called Hadamard problem (so-
metimes Sylvester or Paley problem) and is till now unanswered altho-
ugh there are over 1500 papers devoted to it. Introduction to the to-
pic under discussion are books Hall (1970), Ryser (1963); it should
be noted that these surveys have not included the works of Soviet
authors and also a series of interesting applications stimulating in-
terest in this problem.

A principal difficulty of this problem and many other combina-
torial problems is the lack of unified methods for construction of Ha-
damard matrices of order 4n for all n . The known methods of cons-
truction are applicable only to relatively "rare" sequences on n .
For many n it is usually necessary to develop' a direct method of
construction sometimes using the machine access. There are only a few
papers where recurrent methods of construction for Hadamard matrices
are introduced. These methods use the following branches of mathema-
tics: number theory,group theory, combinatorial analysis. There exist
practically no papers devoted to combination of direct and recurrent
methods. The list of known Hadamard matrices of order n, n <4000,
constructed by a computer was given in Wallis (1978), where he noted
that the minimal order for which the existence of an Hadamard matrix

is not known is 268.



The known methods of Hadamard matrix construction can be divided
into Williamson, Baumert-Hall-Goethals-Seidel, Paley-Wallis-Whiteman
methods and Golay-Turyn, Plotkin and J.Wallis approaches.

This work provides a survey of papers devoted to (classic, gene-
ralized, high-dimensional) Hadamard matrices and discusses some new
results in the topic. Specifically, attention is paid to the questions
of construction of Hadamard matrices with prescribed properties. Besi-
des, the method of construction must be simple and has to allow an
effective realization in the sence of rate and memory of the computer.

The work presented consists of 3 chapters and 9 sections. In
§ 2 we will consider a new approach to construction of Hadamard matri-
ces uniting two above-mentioned methods namely, Williamson and Baumert-
Whiteman method. In § 3 we will generalize and strengthen Golay-Turyn,
Wallis and Plotkin methods. In particular, we will solve in this
section the reverse problem: from the codes we will construct Hada-
mard matrices, prove a theorem allowing for an arbitrary gy i=1,2
to find a lower limit for existence of type 25q1k1, 25q1k1 . q2k2
(ki are arbitrary natural numbers) Hadamard matrices of all orders,
propose a recurrent method for construction of d¢-codes and T-matrices
of new orders. In § 4 new block (sufficiently simple in construction)
method is proposed combined the direct and recurrent methods of Hada-
mard matrices construction. The method allows to state firstly that
there exists a Hadamard matrix of order 12 for which there doesn't
exist a partition D(12,4) generating this matrix (that is, the re-
fusation of second Plotkin hypothesis) and secondly, that from the

existence of two Hadamard matrices of order m m follows the

17 72
existence of an Hadamard matrix of order m, - m2/2.
In §§ 2 - 4 we will give also recurrent formulae of construction

of Williamson matrices, Baumert-Hall, Goethals-Seidel, Wallis, Wallis-
Whiteman arrays of new orders allowing to construct infinite classes

of Hadamard matrices. The block method posseses a definite universa-



lity allowing to construct different orthogonal systems providing fast
algorithms for calculation of partial Fourier sums by these systems.

§ 5 is devoted to investigation of generalized Hadamard matrices
and Butson problem. In particular, some necessary conditions of the
existence for generalized Hadamard matrices H(p,h) (p 1is not a prime
number) are given, recurrent methods of construction of circulant,
block-circulant generalized Hadamard matrices of new orders are ob-
tained.

In § 6 the block method is extended to a high-dimensional case
which allows to construct new classes of high-dimensional regular and
irregular Hadamard matrices. A solution of Schlichta problem is given,
the upper and lower bounds of weight density and excess density of
(classic and high-dimensional) Hadamard matrices are obtained.

In §§ 7 - 9 we will introduce some applications (information com-
pressing. noiseless coding, optimal linear detection of the signals
through noise, construction of multiple- access channels and so on) of
Hadamard matrices where the leading part is played by fast algorithms
for calculations of Hadamard transformations.

Finally, some unanswered problems are formulated.

The author would like to express his sincere gratitude to S.V.
Yablonskiy on whose initiative this work was prepared and to V.M.Si-
delnikov, V.A.Zinovjev, who have read the manuscript and made a se-

ries of valuable notes.



§ 1. Basic definitions, notations and auxiliary

results

NOTATIONS. I - is a unit matrix; J - is a square matrix containing

only ones (in case of need the dimension of matrix is indicated by a

subscript) ;
0 ... 01 10 ... 0
0 .os 1 0[ 0 1 . 0
R = ’ U = (1)
01 «s2 00 00O .01
10 ... | 100 ... 01

It can be shown that we have

PROPERTY 1. For every k, k=1,2,...n-1, n is an odd number, there

2_ .k

exists a unique s such that (US) Uy

PROPERTY 2. There exists a matrix P such that PUP*=D where

Y, 0 ... 0 o0
0 Yoo 0 0
D = 5 s
..an 0
.. 0 T

and Yqr Yor «ees Yn are different n-th roots ofunity.en=(1,1,...,1) is
a row-vector of length n; T is a transposition sign; x is a Kronecker

product [120];® is a matrix product defined as

By q Bq,p wwe Ay g £ . B4 * %
= *
aex = (%21 P22 v Pom O X272 B2, 0 Xy (2)
Am,2 Am,2 : Am,m Xm Am,l * Xl

v A _ n _ n
is an Hadamard product [311], that is if A (ai,j i,q=1" B (bi,}i,j=1

)

then



n
A x R = (ai,j . bi,j)i,j=1 (3)
Let A, B, C, D be square (-1, +1) matrices. Let
A B C D
Wia) = B A -D C 4)
-C D A -B
-D -C B A
denotes a Williamson array [318],
A BR CR DR
-BR A -DTR CTR
Gzl4l = |l ck bR a -BTR (3)
-DR —CTR BTR A
denotes Goethals-Seidel array of order 4 [13 ],
A B c
T T
BY[4] = H AT k% (6)
=C D A -B
-DT =C BT A
denotes a Wallis-Whiteman array of order 4 [311], and
A‘l x B1 AZRXB2 A3R><B3 A4RXB4
T T
wap B R2R* B m1 P SR x By EERRE ‘ (7)
A,Rx B —A4RxB4 1—\1><B1 A2R ><B2
T T
A4RxB4 A3RXB3 —A2RXB2 A1 xB1

denotes a Wallis array of order 4 [299].

A Radon function is defined by equation p(m)=8c+2d, where m=2ab,
a=4c+d, d<3 and b is an odd number. Note that ¢(m)=m, if m=1,2,4,8,
0(16)=9 and 0(2%b)=0(2%), if b is an odd number.

DEFINITION 1. An Hadamard matrix of order m is a mxm matrix Hm with

elements -1 and +1 such that



H HY = H'H_ = mI (8)
m m

Expression (8) is equal to the statement that every two rows and hence,
every two columns of matrix Hm are orthogonal. Obviously, permutation
of rows or columns of H and multiplication by -1 preserves this pro-
perty.

Following geometrical interpretation mzy be given for the expressi-
on (8). If we assume that row elements of matrix Hm represent vector
coordinates of Euclidean m-space with orthonormal base, then determi-
nent deth is (up to sign) the volume of m-parallelepiped constructed
on these vectors. The property (8) shows that the volume of the paralle-
lepiped is product of lengths its edges originating from the common

vertex. An Hadamard matrix is said to be of skew-symmetric type, if
H = Im+Sm, S° = =8 (9)

DEFINITION 2. A rectangular mxn matrix Hm n consisting of -1 and
4

+1 is said to be a rectangular (or incomplete) Hadamard matrix, if

DEFINITION 3 [120] Matrices H, and H, are said to be equivalent Ha-

1 2

damard matrices, if H2 = PH1Q, where P and Q are monomial permutation
matrices with elements -1 and +1. Such a Hadamard matrix is said to be
normalized.

The concept of equivalence leads to the question of finding for a
given order n the number of non-equivalent Hadamard matrices of order
n. So, in 1961 Hall has proved that there are 5 classes of equivalence
for Hadamard matrices of order 16 and in 1965 he has shown the existen-
ce of 3 classes for matrices of order 20. The basic results in this
question one can find in following papers: Rutledge (1952), stiffler

and Baumert (1961), Baumert (1962), Wallis and Wallis (1969), Bussema-

ker and Deidel (1970), Newman (1971), Wallis (1971a), (1971b), (1972a),



(1972b) .

Other concepts and applications of equivalence (integral equivalen-
ce, weight equivalence) one can find in following papers: Gordon (1971),
Norman (1976), Longyear (1978), Cooper, Milas and Wallis (1978), Yang
(1977) and Y.Wallis (1977).

Let (V,B) be a pair of sets V={a1,a2,...,av} , B={Bf §=1

Bicv.element a, and block Bj are incident, if aiEBj.

DEFINITION 4. (V,B) is said to be a balanced incomplete block de-
sign or a B I B-design with parameters V,B,Z,K,S if

1. each block Bj contains identical number of K-elements,

2. each element a; belongs to the same number r of blocks,

3. for each non-ordered pair aj . aj of various elements the number
of blocks containing this pair is S.

A block design is called symmetric, if V=B,K=r.

A set of integers D={x1,x ..xk} is called a difference set with

o
parameters (v,k,s), if for every d€{1,2,...n-1} there are precisely s
pair of xi,ij D2 such that xi—xjsd(modn).

The information about block designs and difference sets one can
find in [61, 120, 311] .

DEFINITION 5.[125]. An orthogonal design of order m of type (51,
sz,...sn), Si>0’ i=1,2,...n 1is a square matrix Am of order m with com-
mutative in pairs elements from set {O,ix1, :xz,...ixn} provided

AmAi =4; s.in

i=1 i m

The information about the orthogonal designs one can find in [124-131].
DEFINITION 6.({4 ]. Square (0,-1,+1) matrices Gi’ i=1,2,...1 of or-

der m satisfying following conditions:
1. G, « Gj=0, I# 95 £p3= 1525 eas4sl

T o
- 64G; =0, 1,3=1,2,...,1

G.l is (-1,+1) matrix of order m.



1

4. £ G.GT = mI
; ivi m
i=1
Will be called a l-elemental hyperframe of order m.

1

=1 of order m has following proper-

The l-elemental hyperframe {Gf

ties:

1 {HxGﬁ i=1 is a l-elemental hyperframe of order km, where H is

an Hadamard matrix of order k.
2. m=0(mod 2).

DEFINITION 7. Matrices S1 and 82 of order 2nxn consisting of ele-

ments (0,-1,+1) will be called S-matrices, provided

2 S .+S is a (-1,+1) matrix

T T _
3. 5,5 *+ 5,5, = nI

2n
Let us note only 2 properties of S-matrices.
1. The order of S-matrix satisfies the condition n=0 (mod 2).

2. If there exists an Hadamard matrix of order m, then there exists
a S-matrix of order mxg P
DEFINITION 8.[295]. Square (-1,+1) matrices Af Bi’ i=1,2,3,4 of

order mn are F-matrices provided

1. Ai’ i=1,2,3,4 are circulant (-1,+1) matrices of order m.

T g
2. B.B. = B.B. o &
1] j i, i,3= 1,2,3,4

3. (AxB.) (AxB,)T = 4mnI
€T 1 €x L mn

™M

X, of or-

X X3, 4

DEFINITION 9 [120]).Square (0,-1,+1) matrices X1, 20

der k are T-matrices provided

1s Xi * Xj = 0, i#3, i,j3=1,2,3,4

4
2z X Xi is a (-1,+1) matrix of order k.

3. X.X.=X.X., i,3=1,2,3,4
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114), (- o n
DEFINITION 10. [ 1. (-1,+1) Sequences {ak} k=1 and {bk} x=1 are

supplementary Golay sequences of length m provided



Chapter I. CONSTRUCTION OF CLASSIC HADAMARD MATRICES

§ 2. Methods of construction for Hadamard matrices

In this paragraph you can find the review of basic methods of cons-
truction of classic Hadamard matrices (see definition 1). Namely, of
Williamson method and its modifications, of Baumert-Hall-Goethals-Sei-
del and Paley-Wallis-Whiteman methods. A new concept of construction of
Hadamard matrices is proposed. It combines the Williamson method and
that of Baumert-Hall-Goethals-Seidel and presents anunified method allo-
~ wing also to strengthen the Paley-Wallis-Whiteman method. This concept
gives in particular a recurrent way of construction the Williamson mat-
rices, the Baumert-Hall, Goethals-Seidel, Wallis-Whiteman arrays of new
orders from which in turn one can produce the infinite classes of Hada-
mard matrices of new orders, for example of order 4n U(n?i), n, n, are

i if

orders of constructed Williamson matrices, m, > 0

2.1. Williamson method and its modifications

This method is based on a theorem has been proved by Williamson in
1944.
THEOREM 2.1 [120].Let square (-1,+1) matrices wi, i=1,2,3,4, of or-

der m are

m-1 . .
1. circulant, that is w, = £ vi‘lul, i=1,2,3,4 (2.0)
j=0 2
: ; (1) _ (1) . .
2. symmetric, that is Vm—j = Vj , j=1,2,...,m-1, i=1,2,3,4 (2.1)
and meet
4 4
3. % Wi = 4mI (2:2)
i=1 &
Then a Williamson array w[w1, W2, w3, w4] is an Hadamard matrix of

order 4m.

This theorem shows that the problem of construction of Hadamard mat-
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rices of order 4m can be reduced to the construction of square (-1,+1)

matrices W i=1,2,3,4 of order m with conditions (2.0), (2.1), (2.2).

1'

Now consider the construction of matrices W i=1,2,3,4 satisfying

»]I
the conditions of Theorem 2.1.

We denote

vV, = PW.P*, i= 1,2,3,4 (2.4)
a, i

where P is an unitary matrix satisfying the property 2. We have from

(2.1)

pJ , i= 1,2,3,4 (2.5)

4 2
s Vi =4mI_, (2.6)
i=1

that is
4 m-1 (1) .2
5 T V. Yﬂ = 4m (2.7)
i=1 j=0

Note that relation (2.7) is true for every Yy hence, for Yk=1 namely,

Vv = 4m (2.8)

is true.
Now we have from relaticn V(l)E {-1,+1}every bracket is a square of
the difference between the positive (pi) and negative (ni) terms of the

sum, that is

2 _
(pi—ni) = 4m (2.9)

™M &

On the other hand Lagrange theorem [120]shows that every positive
number is representable as the sum of 4 squares of integers; moreover

if m is odd, then 4m is representable as the 4 squares of odd numbers,
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that is

4m=q§ *qg +q§ +q§ (2.10)

So, we have from (2.8), (2.9) and (2.10)

m-1 (i) 4 2
E A I (P;-ny) = =gy (2.11)

j=0 J i=1 +

Further, from symmetry of Wi matrices we have

(m=-1) /2

Vé1) + 2 z V¥1) =+ q
j=1 ]
(m=1) /2
j=1 : (2.12)
(m-1) /2

Vé3) + 2 z V@3) =t d5
j=1 )
(m=-1) /2

o 5=1 3j - 4

Now we discuss the choice of sign for qy- i=1,2,3,4, it is easy to

verify that

a) for m=3(mod 4), s=(m-1)/2

; (i) :
) . . f [g.-v_7’'] /2 1is odd
(i) S (i) _p 930 2+ i o
VO + 2 .§ Vj =1 ) (1) i (2 .1.3)
=1 =4 if [qi+vO ] /2 1is odd
b) for m=1(mod 4), s=(m-1)/2
i (i) ;
. s . -q., if [g.+v_""'1 /2 1is even,
vl g5 5 i8] sy T4 . (2.14)
o = 2

. () .
gy if [qi VO ] /2 1is even

Note that expressions [qiivélﬁ /2, i=1,2,3,4 for both m=3(mod 4)

and m=1(mod 4) can not be even and odd respectively, and number of posi-

tive and negative elements consisting the collection (V#l),vél),...,
V(l) , V(i)) are l$1), L‘z)
B} i

s—1 s respectively, where



