AN INVITATION
TO
COMPUTER SCIENCE

G. Michael Schneider ¢ Judith L. Gersting



G. Michael Schneider

Macalester College

Judith L. Gersting

University of Hawaii—-Hilo

Contributing author:

Sara Baase
San Diego State University

WEST PUBLISHING COMPANY
Minneapolis/St. Paul New York Los Angeles

San Francisco



WEST'S COMMITMENT TO THE ENVIRONMENT

In 1906, West Publishing Company began recycling materials left over
from the production of books. This began a tradition of efficient and
responsible use of resources. Today, up to 95 percent of our legal books
and 70 percent of our college and school texts are printed on recycled,
acid-free stock. West also recycles nearly 22 million pounds of scrap paper
annually—the equivalent of 181,717 trees. Since the 1960s, West has
devised ways to capture and recycle waste inks, solvents, oils, and vapors
created in the printing process. We also recycle plastics of all kinds, wood,
glass, corrugated cardboard, and batteries, and have eliminated the use of
Styrofoam book packaging. We at West are proud of the longevity and the
scope of our commitment to the environment.

Production: Michael Bass & Associates

Copyediting: Linda Purrington

Text design: Linda M. Robertson

Cover design: R. Kharibian & Associates
Composition: American Composition & Graphics, Inc.
Mlustration: Asterisk Group

Prepress, printing, and binding by West Publishing Company

% ﬁ PRINTED ON RECYCLED PAPER

British Library Cataloguing-in-Publication Data. A catalogue record for
this book is available from the British Library.

COPYRIGHT ©1995 By WEST PUBLISHING COMPANY
610 Opperman Drive
P.O. Box 64526
St. Paul, MN 55164-0526

All rights reserved

Printed in the United States of America

02 01 00 99 98 97 96 8 7 6 5 4 3 2 1
Library of Congress Cataloging-in-Publication Data

Schneider, G. Michael.

An invitation to computer science / G. Michael Schneider, Judith L.
Gersting.
p- cm.
Includes index,
ISBN 0-314-04375-6

1. Computer science, I. Gersting, Judith L. IL. Title.
QA76.S3594 1995
004—dc20 94-39730

CIP



AN INVITATION T10
COMPUTER SCIENCE

4 4



Preface

This is a text for a one-semester introductory course in computer science. It
assumes no prior background or experience, and it is appropriate for use by
either nonmajors or majors who want a broad overview of the field.

Introductory computer science service courses for nonmajors have under-
gone a number of changes in the last few years. In the 1970s and early 1980s,
they were usually programming courses in FORTRAN, Pascal, or BASIC. At
that time, it was felt that programming in a high-level language was the most
important computing skill that students (usually science or engineering)
could acquire. In the mid- and late-1980s the rapid growth in the use of com-
puting caused the course to evolve into something called “computer literacy,”
where students learned about new applications of computers in such fields as
business, medicine, law, education, and the arts. Finally, with the increased
availability of personal computers and useful software packages, a typical
early-1990s version of the computer science service course spends a semester
teaching students how to use word processors, databases, spreadsheets, bul-
letin boards, and electronic mail.

Many people feel that the time is right for the introductory course in com-
puter science to undergo yet another change. There are two reasons for this.
First, many students coming to college today are quite familiar with personal
computers and software packages. They have been writing with word proces-
sors since high school and have been using networks, e-mail, and bulletin
boards for years. (In fact, it is not uncommon for students to know much more
about using computer networks than faculty members.) A course that teaches
how to use software packages will be of little interest. Second, a course that
concentrates on only one aspect of computer science, whether it is program-
ming, applications of computers, or software packages, can give students a
highly misleading view of the discipline. It is not unusual for students complet-
ing a computer literacy course to view computer science as simply the study of
programming or software packages, certainly a highly incorrect perception.

The feeling of many now is that the first course should be a breadth-first
overview that introduces students to a wide range of topics in computer sci-
ence. The material covered in this course could include such important and
interesting topics as algorithms, hardware design, computer organization,
system software, language models, programming, compilation, theory of com-
putation, artificial intelligence, and social issues of computing. Students

XVii



xviii

PREFACE

would be introduced to the richness of ideas and problems addressed by pro-
fessionals in computer science. A breadth-first approach would also bring us
into line with most other scientific disciplines with respect to their survey
course for nonmajors. For example, a chemistry service course introduces
fundamental concepts (atoms, molecules, reactions) in addition to the uses
and applications of chemistry. Similarly, a beginning physics course for non-
majors spends much of its time on such important theoretical concepts as ele-
mentary particles, force, matter, and energy.

That is exactly how this book is organized. It is a one-semester, breadth-
first introduction to the discipline of computer science. It assumes absolutely
no background in either computer science, programming, or mathematics. It
is appropriate for use as a text for a service course for students not majoring
in computer science. It would also be fully appropriate for use at schools
where the first course for majors is an overview of the discipline rather than a
programming course in Pascal, C/C ++, or Scheme.

The text introduces a wide range of subject matter. However, it is not
enough to simply present a mass of material, a wealth of facts and details. The
discussion must be woven into some fabric, an organized theme that can
unite the many topics covered. The book must create a “big picture” of com-
puter science. Our big picture is to present the discipline of computer science
as a six-layer hierarchy of abstractions, with each layer in the hierarchy build-
ing on ideas and concepts presented earlier. Just as the chemist builds from
protons and electrons to molecules and then to compounds, so too will this
text build from such elementary concepts as gates and circuits to higher-level
ideas such as computer systems, virtual machines, languages, applications,
and social, legal, and ethical problems of technology.

The six levels in our hierarchy are diagrammed in Figure 1.4 and listed
here:

Level 1. The Algorithmic Foundations of Computer Science
Level 2. The Hardware World

Level 3. The Virtual Machine

Level 4. The Software World

Level 5. Applications

Level 6. Social Issues

Level 1 (Chapters 2 and 3) introduces the algorithmic foundations of com-
puter science, the bedrock on which all other aspects of the discipline are
built. It presents such important ideas as the design of algorithms, algorith-
mic problem solving, abstraction, pseudocode, iteration, and efficiency. It
illustrates these ideas using such well-known examples as searching a list,
finding the largest element, sorting a list, and pattern matching.

The discussion in Level 1 assumes that our algorithms are executed by
something called a “computing agent,” an abstract concept for anything that
can carry out the instructions in our solution. Now, in Level 2 (Chapters 4 and
5) we say that we would like these algorithms to be executed by “real” comput-
ers to produce “real” results. This begins our discussion of hardware and com-
puter organization. Chapter 4 presents the basic building blocks of computer
systems—binary numbers, Boolean logic, gates, and circuits. Chapter 5 then
shows how these elementary concepts are used to construct a real computer,



Preface X1X

and it introduces the Von Neumann model of computing. It also presents a
typical machine language instruction set and discusses how algorithms from
Level 1 can be represented in machine language and run on the hardware of
Level 2. It ends with a discussion of new directions in hardware design—mas-
sively parallel processors.

By the end of Level 2, students have been introduced to the basic concepts
of logic design and computer organization, and they can appreciate the com-
plexity of these subjects. This complexity is the motivation for Level 3 (Chap-
ter 6), the virtual machine environment. This section describes how system
software produces a user-oriented problem-solving environment that hides
many of the hardware details discussed earlier. It presents the same problem
discussed in Level 2, that of encoding an algorithm and running it, and shows
how easy that is to do in a virtual environment that contains software tools
such as text editors, assemblers, loaders, and an operating system. Level 3 also
discusses the services and responsibilities of operating systems and intro-
duces the different types of systems that can be created, such as real-time sys-
tems, embedded computers, time sharing, local-area networks, and
distributed systems.

Now that we have a supportive problem-solving environment, what do we
want to do? Most likely we want to write programs to solve problems. This
becomes the motivation for Level 4 (Chapters 7-10), the world of software.
Although the book should not be seen as a programming text, Chapter 7 con-
tains an introduction to Pascal and some of its important concepts—variables,
data types, assignment, conditional, iteration, and procedures. This will give
students an appreciation for the task of the programmer and the power of the
problem-solving environment created by a modern high-level programming
language. However, we also want students to know that there are many other
high-level language models. Chapter 8 shows a simple algorithm encoded in
three other procedural languages, and also presents an overview of the func-
tional, logic, and object-oriented language paradigms. Chapter 9 describes the
design and construction of a compiler and shows how the languages of Chap-
ters 7 and 8 must be translated into machine language for execution. This
material ties together many ideas that have come before as it shows how an
algorithm (Level 1) is coded into a high-level language and compiled (Level 4)
into machine language and executed on a typical Von Neumann machine
(Level 2) using the system software tools of Level 3. These frequent references
to earlier concepts help to reinforce those ideas, and the use of “recurring
themes” is a common teaching method in this text. Finally, in the last chapter
of Level 4, we introduce the idea of computability and unsolvability. It
describes a model of computing (a Turing machine) and uses that model to
show that there are problems for which no general algorithmic solution can be
found.

We now have a supportive software environment in which it is possible to
write programs to solve important problems. The question now is, what prob-
lems should we solve? What are some of the most important applications of
computers? In Level 5 (Chapters 11-12) we present a few important uses of
computers, including spreadsheets and modeling, databases, numeric and
symbolic computing, networks, electronic mail, and artificial intelligence.
There is no way in two chapters to cover all the important applications of
information technology, or to cover specific applications in minute detail. Our



XX

PREFACE

goal is to show students that application software packages are not “magic
boxes” but the result of the intelligent use of the computer science concepts
developed in earlier chapters. We hope that this introduction to a few key
applications will encourage readers to seek out information on applications
that are specific to their own interests.

Finally, we reach the highest level of study, Level 6 (Chapter 13), which
addresses social, ethical, legal, and professional issues raised by the applica-
tions discussed in Level 5. This section (written by contributing author Sara
Baase) talks about such thorny problems as privacy concerns aggravated by
the growth of on-line databases and security problems caused by the use of
networks and telecommunication. This section introduces students to impor-
tant social issues and makes them aware of the enormous impact that com-
puter science and computer technology is having on society.

This, then, is the hierarchical structure of the text. It begins with the algo-
rithmic foundations of the discipline, and works its way upward from low-
level hardware concepts through virtual machine environments, languages,
software, and applications programs, to the social issues raised by computer
technology. This organizational tool is one of the most important aspects of
the book, as it allows us to present computer science as a unified, integrated,
and coherent discipline of study.

Because of the structure of this text as a hierarchy of ideas, a sequential
progression through the chapters is most suitable. However, material from
Level 6 on social issues can be introduced throughout the course as appropri-
ate. Also, small sections along the way can be omitted if desired, for example,
2.3.3 and 3.5.4 (the pattern matching algorithm), 4.4.3.2 (the full-adder cir-
cuit), 7.7 (software engineering), 8.3.4 (parallel programming), or 9.2.4 (code
optimization). The Instructor’'s Manual associated with this text provides sug-
gestions on how to organize and present the material based on the time and
the resources available for the course.

Another important development in the field is the realization that, like
physics, chemistry, or biology, computer science is an empirical, laboratory-
based discipline in which learning comes not only from listening but also
from doing and trying. Many complex ideas in computer science cannot be
truly understood until they are visualized, observed, and manipulated. Today,
most computer science faculty view a laboratory component as an essential
part of every introductory course. This important development is fully
reflected in our approach to teaching computer science. Associated with the
text is a laboratory manual and custom-designed laboratory software that
allows students to experiment with theoretical concepts presented in this text.

The manual contains 19 separate laboratory experiences that build on and
amplify the ideas presented. Each laboratory assignment includes software
that visualizes an important concept and gives students the chance to observe,
study, analyze, and modify. For example, associated with Level 1 (the algorith-
mic foundations of computer science) are labs that animate the algorithms
presented in Chapters 2 and 3, and that analyze the running time of these
algorithms for different-sized data sets. Associated with Level 2 (the hardware
world) are labs that allow students to design and analyze logic circuits and
program a simulated Von Neumann machine identical to one presented in the
text. Similarly there are projects for virtually all the concepts discussed in the
text. Each of the 19 laboratories includes an explanation of how to use the



Preface XX1i

software, a description of how to conduct the experiment, and discussion
questions and problems for students to complete. Students should be able to
work on their own or in collaborative teams to run these lab experiments, in
either a closed lab or open lab setting. The exercises in lab experience 12
(12.12-12.17) involve Pascal programming for which the students may need a
bit more help. Lab experience 1 serves as an introduction to the software
suite, and also provides the students with a useful glossary-building tool that
they can use with the text (and with other courses as well).

Both PC and Macintosh versions of the software are available. Most of the
lab experiences require only the software specifically designed to accompany
the text. A few, however, depend upon student access to additional software.
Lab 13 requires Scheme or some other LISP-based interpreter. Lab 17
assumes that the students are using Microsoft Excel or some other spread-
sheet package. Lab 18 is based upon Mathematica, and Lab 19 assumes that
students have access to electronic mail and the Internet.

In addition to the laboratory software, there are a number of other teach-
ing aids available to support the text material, including transparency mas-
ters, videotapes, a test bank, and an instructor’s manual containing chapter
outlines, answers to exercises, and suggestions for course organization.

Computer science is a young and exciting discipline, and we hope that the
material in this text, along with the laboratory projects, will convey this feel-
ing of newness and excitement. By presenting the field in all of its richness—
algorithms, hardware, software, applications, social issues—we hope to give
students a deeper appreciation for the many diverse and interesting areas of
research and study within the discipline of computer science.

G. Michael Schneider
Judith L. Gersting



Acknowledgements

We would like to thank the many people who contributed greatly to the suc-
cessful completion of this project. First, a huge thank you to Ken Lambert and
Tom Whaley for their cooperative spirit and outstanding work on the labora-
tory manual and the associated software package. Many thanks to Jerry
Westby, our editor at West Publishing, for “hanging in there” through the
painstaking cycles of revisions and rewrites. Many other individuals at West
were also helpful during the completion of this project, most notably Dean De
Chambeau and Stephanie Buss. We would like to acknowledge the contribu-
tions of all the referees who read the early drafts of the text and made so many
helpful suggestions and comments. Finally, we wish to thank our spouses,
Ruthann and John, for always being supportive of our work.

Sara Baase thanks the following people who assisted in the preparation of
Chapter 13 by providing leads and information, answering questions, and/or
reading drafts:

Robert C. Balling, Jr. (Director of the Office of Climatology, Arizona State
University), Tim Barnett (Scripps Institution of Oceanography, University of
California, San Diego), Leland Beck (Computer Science Division, San Diego
State University), Jim Bennett (president, Center for Constitutional Issues in
Technology), John L. Carroll (Computer Science Division, San Diego State
University), Michael B. Cline (Azon, Keuffel & Esser), Jeffrey W. DeMarre
(Seattle-Tacoma International Airport), Williamson Evers (Hoover Institu-
tion), Chuck Charman (General Atomics), Chuck Cooper (Biology Depart-
ment, San Diego State University), Pat Feuerstein, Bence Gerber (Livermore
Software Technology Corporation), Mike Godwin (staff counsel, Electronic
Frontier Foundation), James L. Hoover (Law School Library, Columbia Uni-
versity), the staff of the Interlibrary Loan Department at San Diego State Uni-
versity, Jim Johnson (General Motors Research Labs), Tawfik Khalil (General
Motors Research Labs), Darrell Long (Computer Science Department, Univer-
sity of California, Santa Cruz), Bernard Mandanca (National Oceanic and
Atmospheric Administration), John F. B. Mitchell (United Kingdom Meteoro-
logical Office), Steve Napear (San Diego Supercomputer Center), Peter G.
Neumann (SRI International), Jack Resnick, MD (Radiology Department,
Sharp Rees-Stealy Medical Group), Jack Revelle, Carol Sanders, Jack Sanders
(attorney), Bernard Siegan (University of San Diego School of Law), Robert
Ellis Smith (publisher, Privacy Journal), Shari Steele (staff attorney, Electronic

xxiil



XXiV

ACKNOWLEDGEMENTS

Frontier Foundation), Jacob Sullum (associate editor, Reason magazine),
Vernor Vinge (Computer Science Division, San Diego State University), Baja
Bob Vinton, Steve Wampler (Lawrence Livermore National Laboratory), Jim
Warren (AutoDesk, Inc.), Robert Whirley (Lawrence Livermore National Lab-

oratory), and any others I may have omitted.

We would also like to thank the following reviewers for their valuable

comments:

Ernest C. Ackermann
Mary Washington College

Elizabeth S. Adams
Hood College

Virginia T. Anderson
University of North Dakota

William N. Anderson, Jr.
Fairleigh Dickinson
University

James D. Arthur
Virginia Polytechnic
Institute

Douglas Baldwin
SUNY-Geneseo

Adrienne G. Bloss
Roanoke College

Anselm Blumer
Tufts University

Kim B. Bruce
Williams College

Jim Carter
University of
Saskatchewan

Lillian N. Cassel
Villanova University

Darrah Chavey
Beloit College

John Cigas
Rockhurst College

David Cordes
University of Alabama

Lee D. Cornell
Mankato State University

Michelle Wahl Craig
University of Toronto

Grace Anne Crowder
Towson State University

Fadi Pierre Deek
New Jersey Institute of
Technology

Herbert L. Dershem
Hope College

Maurice L. Eggen
Trinity University

Henry A. Etlinger
Rochester Institute of
Technology

Daniel J. Falabella
Albright College

John E. Howland
Trinity University

Mary Kolesar
Utah State University

Ken Lambert
Washington & Lee
University

Rickard A. Lejk
University of North
Carolina

Jimmie M. Purser
Millsaps College

Samuel A. Rebelsky
Dartmouth College

Jane M. Ritter
University of Oregon

Larry F. Sells

Oklahoma City University

Cliff Shaffer
Virginia Polytechnic
Institute

Angela B. Shiflet
Wofford College

Ted Sjoerdsma
Washington & Lee
University

Jeff Slomka
Southwest Texas State
University

Gordon A. Stegink
Hope College

Paul Stephan
Case Western Reserve
University

Bill Taffe
Plymouth State College

Robert J. Wernick
San Francisco State
University

Tom Whaley
Washington & Lee
University

Craig E. Wills
Worcester Polytechnic
Institute

Carol W. Wilson
Western Kentucky
University



Acknowledgements XXV

Finally, we wish to acknowledge the use of the following trademarks in the
text: Macintosh, Hypercard (trademarks of the Apple Computer Corp.), T3D
and X-MP (Cray), CM-5 (Thinking Machines Co.), VAX 4000-400, VAX-VMS
(Digital Equipment Corp.), MS-DOS, Windows, Windows NT, Visual BASIC,
Visual C++, Excel (Microsoft), UNIX (AT&T Corp.), Toolbook (Asymmetrix
Corp.), and Mathematica (Wolfram Associates).



Brief Contents

Preface xvii
Chapter 1 An Introduction to Computer Science 1
Level 1

THE ALGORITHMIC FOUNDATIONS OF

COMPUTER SCIENCE 23
Chapter 2 Algorithm Discovery and Design 25
Chapter 3 The Efficiency of Algorithms 56
Level 2
THE HARDWARE WORLD 103
Chapter 4 The Building Blocks: Binary Numbers, Boolean

Logic, and Gates 105
Chapter 5 Computer Systems Organization 149
Level 3
THE VIRTUAL MACHINE 207

Chapter 6 An Introduction to System Software and Virtual
Machines 209



vi

BRIEF CONTENTS

Level 4

THE SOFTWARE WORLD

Chapter 7 Introduction to High-Level Language
Programming

Chapter 8 The Tower of Babel

Chapter 9 Compilers and Language Translation

Chapter 10 Models of Computation

Level 5

APPLICATIONS

Chapter 11 A Case Study in Four Scenes
Chapter 12 Artificial Intelligence

Level 6

SOCIAL ISSUES

Chapter 13 Social and Legal Issues
Answers to Practice Problems

Index

261

263
317
362
403

441

443
493

511

513

567

589



Contents

Preface

Chapter 1 An Introduction to Computer Science

1.1
1.2

1.3

1.4

Level 1

Introduction 1

The Definition of Computer Science 3

Special Interest Box: Abu Ja’far Muhammed ibn-Musa
Al-Khowarizmi (A.D. 780-850) 7

Algorithms 9
1.3.1 The Formal Definition of an Algorithm 9
Special Interest Box: In the Beginning ... 10
1.3.2 The Importance of Algorithmic Problem
Solving 15

Practice Problems 16
Organization of the Text 16
Lab Experience 1 20
Exercises 20

THE ALGORITHMIC FOUNDATIONS OF
COMPUTER SCIENCE

Chapter 2 Algorithm Discovery and Design

2.1
2.2

2.3

Introduction 25

Representing Algorithms 25

2.2.1 Pseudocode 27

2.2.2 Sequential Operations 28
Practice Problems 31

2.2.3 Conditional and Iterative Operations 31
Special Interest Box: From Little Primitives,

Mighty Algorithms Do Grow 35

Practice Problems 36

Examples of Algorithmic Problem Solving 36

2.3.1 Example 1: Looking, Looking, Looking 36
Lab Experience 2 41

xvii

23
25

vii



viii CONTENTS

2.3.2 Example 2: Big, Bigger, Biggest 41
Lab Experience 3 46
Practice Problem 46

2.3.3 Example 3: Meeting Your Match 46
Practice Problems 52

2.4 Conclusion 52
Exercises 53
Chapter 3 The Efficiency of Algorithms

3.1 Introduction 56
3.2 Algorithm Attributes 57
Practice Problem 61
3.3 A Choice of Algorithms 61
3.3.1 The Shuffle Left Algorithm 62
3.3.2 The Copy Over Algorithm 64
3.3.3 The Converging Pointers Algorithm 65
3.3.4 Comparisons 66
Lab Experience 4 67
Practice Problems 67
3.4 Measuring Efficiency 67
3.4.1 Sequential Search 67
3.4.2 Order of Magnitude 70
Special Interest Box: The Tortoise and the Hare
Practice Problems 76
3.5 Analysis of Algorithms 77
3.5.1 Data Cleanup 77
3.5.2 Selection Sort 79
Lab Experience 5 84
3.5.3 Binary Search 85
3.5.4 Pattern Matching 91
3.5.5 Summary 92
Practice Problems 92
3.6 When Things Get Out of Hand 92
Lab Experience 6 97
Practice Problems 97
Exercises 98
3.7 Summaryof Level 1 101

Level 2

THE HARDWARE WORLD

Chapter 4 The Building Blocks: Binary Numbers, Boolean
Logic, and Gates

4.1 Introduction 105

4.2 The Binary Numbering System 106
4.2.1 Binary Representation of Information 106

Practice Problems 111

4.2.2 The Reliability of Binary Representation 111
4.2.3 Binary Storage Devices 114

76

56

103

105



Contents 1X

Special Interest Box: Chips and Dip 119

4.3 Boolean Logic and Gates 119
4.3.1 Boolean Logic 119
Special Interest Box: George Boole (1815-1864) 120
Practice Problems 123
4.3.2 Gates 123
4.4 Building Computer Circuits 126
4.4.1 Introduction 126
4.4.2 A Circuit Construction Algorithm 128
Lab Experience 7 132
Practice Problems 133
4.4.3 Examples of Circuit Design and Construction 133
4.43.1 A Compare-for-Equality Circuit 133
4.4.3.2 An Addition Circuit 135
Lab Experience 8 141
Practice Problem 141
444 Summary 141
4.5 Control Circuits 141
4.6 Conclusion 146
Exercises 147
Chapter 5 Computer Systems Organization 149
5.1 Introduction 149
5.2 The Von Neumann Architecture 152
5.2.1 Memory 153
Practice Problems 160
5.2.2 Input-Output and Mass Storage 162
Practice Problems 167
5.2.3 The Arithmetic-Logic Unit 167
5.2.4 The Control Unit 172
5.2.4.1 Machine Language Instructions 172
Practice Problems 177
5.2.4.2 Control Unit Registers and Circuits 177
5.2.5 Putting All the Pieces Together 179
Lab Experience 9 184
5.3 Historical Overview of Computer Systems

Development 184
5.3.1 The Early Period—Up to 1940 185
Special Interest Box: Charles Babbage (1791-1871)
Ada Augusta, Countess of Lovelace
(1815-1852) 189
5.3.2 The Birth of Computers—1940-1950 190
Special Interest Box: And the VerdictIs... 192
5.3.3 The Modern Era—1950 to the Present 193
Special Interest Box: Good Evening, This Is Walter
Cronkite. 194
Special Interest Box: John Von Neumann 195
5.3.4 The Future—Non-Von Neumann Architectures 196
Special Interest Box: Chasing the Elusive
Teraflop 202



