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PREFACE

This book i1s designed to teach students how to apply mathematics by for-
mulating, analyzing, and criticizing models. It 1s intended as a first course
in applied mathematics for use primarily at an upper division or beginning
graduate level. Some course suggestions are given near the end of the preface.

The first part of the book requires only elementary calculus and, 1n
one chapter, basic probability theory. A brief introduction to probability
1s given in the Appendix. In Part Il somewhat more sophisticated mathe-
matics 1s used. '

Although the level of mathematics required 1s not high, this 1s not an
casy text: Setting up and manipulating models requires thought, effort,
and usually discussion—purely mechanical approaches usually end i1n
failure. Since I firmly believe in learning by doing, all the problems require
that the student create and study models. Consequently, there are no trivial
problems in the text and few very easy ones. Often problems have no single
best answer, because different models can illuminate different facets of a
problem. Discussion of homework in class by the students 1s an integral
part of the learning process; in fact, my classes have spent about half the
time discussing homework. I have also encouraged (or insisted) that home-
work be done by students working in groups of three or four. We have usually

devoted one class period to a single model, both those worked out in the
text and those given as problems. I have also required students to report
on a model of their own choosing, the amount of originality required de-
pending on the level of the student.

Except for Chapter 6, each section of the text deals with the application
of a particular mathematical technique to a range of problems. This lets
the students focus more on the modeling. My students and I have enjoyed
the variety provided by frequent shifts from one scientific discipline to
another. This structure also makes 1t possible for the teacher to rearrange
and delete material as desired ; however, Chapter 1 and Section 2.1 should be
studied first. Chapter | provides a conceptual and philosophical framework.
The discussions and problems in Section 2.1 were selected to get students
started 1n mathematical modeling.

Most of the material in this book describes other people’s models,
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Vi PREFACE

frequently arranged or modified to fit the framework of the text, but hope-
fully without doing violence to the original intentions of the model. I believe
all the models deal with questions of real interest: There are no ““fake™
models created purely to illustrate a mathematical idea, and there are no
models that have been so sanitized that they have lost contact with the com-
plexities of the real world. Since I've selected the models, they reflect my
interests and knowledge. For this [ make no apology —caveat emptor.

The models have been chosen to be briet and to keep scientific back-
ground at a minimum. While this makes for a more lively and accessible
text, it may give the impression that modeling can be done without scien-
tific training and that modeling never leads to involved studies. I thought
seriously about counteracting this by adding a few chapters, each one de-
voted to a specific model. Unable to find a way to do this without sacrificing
“learnning by doing,” I abandoned the idea.

Course suggestions. On an undergraduate level, the text can be used at
a leisurely pace to fill an entire year. It may be necessary to teach some
probability theory for Chapter 5, and you may wish to drop Chapter 10.
More variety can be obtained by using the text for part of a year and then
spending some time on an in-depth study of some additional models—
with guest lecturers from the appropriate scientific disciplines if possible.
Another alternative 1s to spend more time on simulation models after
Section 5.2 if a computer is available for groups of students to develop their
own in-depth models.

Acknowledgments. Particular thanks are due to Norman Herzberg for
his many suggestions on the entire manuscript. My students have been
invaluable 1n pointing out discussions and problems that were too muddled
or terse to understand. I owe thanks to a variety of people who have com-
mented on parts of the manuscript, suggested models, and explained 1deas
to me.

['d appreciate hearing about any errors, difficulties encountered, sug-
gestions for additional material, or anything else that might improve future
editions of this book.

EDWARD A. BENDER

La Jolla, California
August 1977
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CHAPTER 1

WHAT IS MODELING

1.1 MODELS AND REALITY

The theoretical and scientific study of a situation centers around a model.
that 1s, something that mimics relevant features of the situation being studied.
For example, a road map, a geological map, and a plant collection are all
models that mimic difierent aspects of a portion of the earth’s surface.

The ultimate test of a model 1s how well 1t performs when it is applied
to the problems it was designed to handle. (You cannot reasonably criticize
a geological map 1if a major highway i1s not marked on it; however, this
would be a serious deficiency in a road map.) When a model 1s used, it may
lead to incorrect predictions. The model 1s often modified, frequently dis-
carded, and sometimes used anyway because it i1s better than nothing. This

1s the way science develops.
Here we are concerned exclusively with mathematical models, that is,

models that mimic reality by using the language of mathematics. Whenever
we use “model” without a modifier, we mean “mathematical model.”
What makes mathematical models useful? If we “speak in mathematics,”
then

1. We must formulate our ideas precisely and so are less likely to let implicit
assumptions slip by.

2. We have a concise “language” which encourages manipulation.

3. We have a large number of potentially useful theorems available.

4. We have high speed computers available for carrying out calculations.

There 1s a trade-oftf between items 3 and 4: Theory is useful for drawing
general conclusions from simple models, and computers are useful for
drawing specific conclusions from complicated models. Since the thought
habits needed 1n formulating models are quite similar in the two cases, it

1



2 WHAT IS MODELING

matters little what sort of models we use. consequently, I have felt free to
neglect computer based models purely for personal pedagogical reasons.
There are some references to a computer in Section 5.2 where Monte Carlo
simulation 1s discussed and, to a lesser extent, in Section 8.2 where numerical
solutions to differential equations are discussed.

Mathematics and physical science each had important effects on the
development of the other. Mathematics 1s starting to play a greater role in
the development of the life and social sciences, and these sciences are starting
to influence the development of mathematics. This sort of interaction is
extremely mmportant if the proper mathematical tools are going to be
developed for the various sciences. S. Bochner (1966) discusses the hand-in-
hand development of mathematics and physical science. Some people feel
that there 1s something deeper going on than simply an interaction leading
to the formulation of appropriate mathematical and physical concepts.
E. P. Wigner (1960) discusses this.

1.2. PROPERTIES OF MODELS

We begin with a definition based on the previous discussion: A mathematical
model is an abstract, simplified, mathematical construct related to a part of
reality and created for a particular purpose. Since a dozen different people
are likely to come up with a dozen different definitions, don’t take this one
too seriously; rather, think of 1t as a crude starting point around which to
build your own understanding of mathematical modeling.

We now have a problem: To fully appreciate the general discussion
in the next two sections you should look at some concrete examples like
those in Sections 1.4 and 1.5; however, you will need some abstract back-
ground to appreciate the examples fully. I suggest reading the remainder of
the chapter through quickly and then coming back to this point and re-
reading more carefully.

As far as a model 1s concerned. the world can be divided into three

parts:

1. Things whose effects are neglected.

2. Things that affect the model but whose behavior the model 1s not
designed to study.

3. Things the model is designed to study the behavior of.

The model completely ignores item 1. The constants, functions, and so on.
that appear in item 2 are external and are referred to as exogenous variables
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(also called parameters, input, or independent variables). The things the
model seeks to explain are endogenous variables (also called output or
dependent variables). The exogenous-endogenous terminology 1s used In
some areas of modeling. The input-output terminology 1s used in areas
of modeling where the model 1s viewed as a box into which we feed infor-
mation and obtain information from. The parameter-independent-dependent
terminology 1s the standard mathematical usage.

Suppose we are hired by a firm to determine what the level of production
should be to maximize profits. We would construct a model that enables
us to express profits (the dependent variable) in terms of the level of pro-
duction, the market situation, and whatever else we think is relevant (the
independent variables). Next we would measure all the independent variables
except the level of production and use the model to determine which value
of the level of production gives the greatest profit.

Now let’s look at things from the point of view of an economist who
1s seeking to explain the amount of goods firms produce. A two-part model
could be constructed: Firms seek to maximize profits, and profits can be
determined as sketched in the previous paragraph. In this model profits
become an internal variable (of no interest except for the machinations of
the model), and level of production changes from an independent to a
dependent variable.

These three categories (neglected, input. and output) are important in
modeling. If the wrong things are neglected. the model will be no good. If
too much 1s taken into consideration, the resulting model will be hopelessly
complex and probably require incredible amounts of data. Sometimes. in
desparation a modeler neglects things not because he thinks they are un-
important, but because he cannot handle them and hopes that neglecting
them will not invalidate the conclusions. A. Jensen (1966) discusses the
development of a model for safety-at-sea problems. The main difhculty in
formulating the model was to determine what types of encounters between
ships were dangerous, that is, to separate items 1 and 2. He found this to be
hard even with the aid of nautical experts. (If you want to know the answer,
you’'ll have to read the article.)

Proper choice of dependent variables (1.e., output) is essential; we must
seek to explain the things we can explain. Often this choice is relatively clear,
as in the example involving the economist who wished to explain the level of
production of a firm. Sometimes we need to be careful; for example, we could
explain profits in terms of level of production, but not conversely as we
might naively try to do, since we were asked to determine the best level of
production.

Since different models make different types of simplifying assumptions,
there is usually no single best model for describing a situation. R. Levins



4 WHAT IS MODELING

(1968, p. 7) observed that “it i1s not possible to maximize simultaneously
generality, realism, and precision.” In the social sciences one is often content
with a statement that something will increase; precision has been sacrificed
for realism and (hopefully) generality. Simulation models usually try for
precision and realism but sacrifice generality. These three trade-offs should
become clearer after you have studied some actual models.

Definitions of the variables and their interrelations constitute the
assumptions of the model. We then use the model to draw conclusions (i.e.. to
make predictions). This is a deductive process: If the assumptions are true,
the conclusions must also be true. Hence a false prediction implies that the
model 1s wrong in some respect. Unfortunately things are usually not this
clear-cut. We know our model is only an approximation, so we cannot
expect perfect predictions. How can we judge a model in this case?

A conclusion derived from a crude model i1s not very believable,
especially if other models make contrary predictions. A result is robust if it
can be derived from a variety of different models of the same situation, or
from a rather general model. A prediction that depends on very special
assumptions for its validity is fragile. The cruder the model, the less believable
its fragile predictions.

You may notice that we have talked about conclusions, not explanations.
Can a model provide explanations? This i1s a somewhat philosophical
question, and different people have different notions of what constitutes an
explanation. Let us grant that, in some sense, models can provide explana-
tions. A decision about the validity of a model is usually based on the accuracy
of 1ts predictions. Unfortunately, two different models may make the same
predictions but offer different explanations. How can this be?

We can think of the situation we are modeling as being a “black box”
which outputs something for every input. (“Something” can be no output.)
A model makes correct predictions if it outputs the model equivalent of the
black box output whenever the model equivalent of the black box input is
fed in. The mechanism is irrelevant when dealing with predictions, but the
nature of the mechanism i1s the heart of an explanation. Although there is
usually a situation in which two different models lead to different predictions,
we may not be able to determine which prediction is correct. For example,
a model of a politician can be constructed by assuming that his behavior
1s (1) motivated by concern for his fellow man or (2) motivated by a desire
for public office. In many situations these two models lead to identical or
very similar predictions. It may be difficult to make contradictory predictions
that can be checked. Another example for those familiar with simple circuits is
the mathematical equivalence between perfect springs and perfect LC circuits.
Although the underlying mathematics is identical, no one would seriously
suggest that Hooke’s law for springs “explains™ the circuit’s behavior.
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We have been talking about an ideal modeler. When any of us ap-
proaches a problem, we do so in a limited, biased fashion. The more open-
minded, communicative, and creative we can be, the better our model 1s likely
to be. The following poem illustrates the problems that can arise.

The Blind Men and the Elephant

It was six men of Indostan

To learning much inclined,
Who went to see the Elephant

(Though all of them were blind),
That each by observation

Might satisfy his mind.

The First approached the Elephant,
And happening to fall

Against his broad and sturdy side,
At once began to bawl:

“God bless! but the Elephant
Is very like a wall!”

The Second, feeling of the tusk,
Cried, “Ho! what have we here

So very round and smooth and sharp?
To me 'tis mighty clear

This wonder of an Elephant
[s very like a spear!”

The third approached the animal,
And happening to take

The squirming trunk within his hands,
Thus boldly up and spake:

“I see,” quoth he, “the Elephant
Is very like a Snake!”

The Fourth reached out an eager hand,
And felt about the knee.

“What most this wondrous beast 1s like
Is mighty plain,” quoth he:

" "Tis clear enough the Elephant
[s very like a tree!”
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The Fifth who chanced to touch the ear,
Said: “ E’en the blindest man

Can tell what this resembles most:
Deny the fact who can,

This marvel of an Elephant
Is very like a fan!”

The Sixth no sooner had begun
About the beast to grope,
Than, seizing on the swinging tail

That fell within his scope.®
“I see,” quoth he, “the Elephant
[s very like a rope!”

And so these men of Indostan
Disputed loud and long,

Each in his own opinion
Exceeding stiff and strong.

Though each was partly in the right
And all were in the wrong!

John Godfrey Saxe (1816-1887)
Reprinted 1in Engineering Concepts
Curriculum Project (1971)

1.3. BUILDING A MODEL

Model building involves imagination and skill. Giving rules for doing it is
like listing rules for being an artist; at best this provides a framework around
which to build skills and develop imagination. It may be impossible to teach
imagination. It won’t try, but I hope this book provides an opportunity for
your skills and imagination to grow. With these warnings, I present an out-
line of the modeling process.

1. Formulate the Problem. What is it that you wish to know? The nature
of the model you choose depends very much on what you want 1t to do.

2. Outline the Model. At this stage you must separate the various parts
of the universe into unimportant, exogenous, and endogenous. The
interrelations among the variables must also be specified.
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3. Is It Useful? Now stand back and look at what you have. Can you
obtain the needed data and then use it in the model to make the pre-
dictions you want? If the answer i1s no, then you must reformulate the
model (step 2) and perhaps even the problem (step 1). Note that **useful
does not mean reasonable or accurate; they come in step 4. It means:
If the model fits the situation, will we be able to use 1t?

4. Test the Model. Use the model to make predictions that can be checked
against data or common sense. It 1s not advisable to rely entirely on
common sense, because it may well be wrong. Start out with easy pre-
dictions—don’t waste time on involved calculations with a model that
may be no good. If these predictions are bad and there are no mathe-
matical errors, return to step 2 or step 1. If these predictions are accept-
able, they should give you some feeling for the accuracy and range of
applicability of the model. If they are less accurate than you anticipated,
it 1s a good 1dea to try to understand why, since this may uncover 1m-
plicit or false assumptions.

At this point the model 1s ready to be used. Don’t go too far; it is
dangerous to apply the model blindly to problems that differ greatly from
those on which 1t was tested. Every application should be viewed as a test
of the model.

You may not be able to carry out step 2 immediately, because it 1S not
clear what factors can be neglected. Furthermore, it may not be clear how
accurately the exogenous variables need to be determined. A common
practice 1s to begin with a crude model and rough data estimates in order
to see which factors need to be considered in the model and how accurately
the exogenous variables must be determined.

Some models may require no data. If a model makes the same prediction
regardless of the data, we are not getting something for nothing because this
prediction i1s based on the assumptions of the model. To some extent, the
distinction between data and assumptions is artificial. In an extreme case,
a model may be so specialized that its data are all built into the assumptions.

Sometimes step 4 may be practically wmpossible to carry out. For
example, how can we test a model of nuclear war? What do we do if we have
two models of a nuclear war and they make different predictions? This can
easily happen in fields of study that lack the precisely formulated laws
found in the physical sciences. At this point experience is essential —not
experience in mathematics but experience in the field being modeled. Even
if predictions can be tested, the testing may be expensive to carry out and
may require training in a particular field of experimental science. Since the
absence of experimental verification leaves the modeling process incomplete,
[ have given test results whenever I have been able to obtain them.
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1.4. AN EXAMPLE

We discuss models for the long term growth of a population in order to
illustrate some of the ideas of the two previous sections. We want to predict
how a population will grow numerically over a few generations. This is the
problem (step 1 in Section 1.3).

Let the exogenous (independent) variables be the net reproduction
rate r per individual, the time ¢, and the size of the population at t = 0. The
net reproduction rate 1s the birth rate minus the death rate. In other words,
it 1s the fractional rate of change of the population size: r = (dN/dt)/N.
There 1s only one endogenous (dependent) variable, the size of the population
at time t, which we denote by N(t). We also refer to r as the net growth rate.

To obtain a simple model, we ignore time lag effects; that is, we assume
that only the present value of N and its derivatives are relevant in determining
the future values of N. (This will lead to a differential equation.) If the fraction
of the population that is of reproductive age varies with ¢, this can be a very
poor assumption. Let’s also assume that the net reproduction rate r is a
constant. This gives us a rather crude model with the basic relationship

1 dN

(1) N‘J}*—"'

The model would certainly be useful if it fits the real world (step 3). The
solution of (1) 1s N(t) = N(0)e". Unless r = 0, the population will eventually
either die out (r negative) or grow to fill the universe (r positive). Reasonable
behavior of the population size i1s a very fragile prediction of the model.
This casts serious doubt on the validity of using a constant net reproduction
rate for predicting long term growth. This approach to a model illustrates
an important point: Study the behavior of vour model in limiting cases (in
this case as time gets very long, 1.e., as t — 0).

Our test of the model (step 4) for long term growth indicates that it
must be rejected; however, it may be useful for short term predictions.
Unfortunately, we specifically asked for long term predictions.

Clearly the growth rate of a population will depend on the size of the
population because of such eftects as exhaustion of the food supply. If the
population becomes very large, we can expect the death rate to exceed the
birth rate. Let’s translate this into mathematics. We replace the net repro-
duction rate r in (1) by r(N) which is a strictly decreasing function of N for
large N and becomes negative when N is very large. Thus

LN (N)
: = r(N).
N dt




