ARTIFICIAL INTELLIGENCE, SIMULATION, AND MODELING Lawrence E. Widman Kenneth A. Loparo Norman R. Nielsen ## ARTIFICIAL INTELLIGENCE, SIMULATION, AND MODELING ## Edited by ### Lawrence E. Widman Division of Cardiology, Department of Medicine The University of Texas Health Science Center at San Antonio San Antonio, Texas and Cardiology Service Audie L. Murphy Memorial Veterans' Hospital San Antonio, Texas ## Kenneth A. Loparo Department of Systems Engineering and Center for Automation and Intelligent Systems Research Case Western Reserve University Cleveland, Ohio ### Norman R. Nielsen Information Industries Division SRI International Menlo Park, California A WILEY-INTERSCIENCE PUBLICATION **JOHN WILEY & SONS** New York • Chichester • Brisbane • Toronto • Singapore Copyright © 1989 by John Wiley & Sons, Inc. All rights reserved. Published simultaneously in Canada. Reproduction or translation of any part of this work beyond that permitted by Section 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. Requests for permission or further information should be addressed to the Permission Department, John Wiley & Sons, Inc. ### Library of Congress Cataloging-in-Publication Data Artificial intelligence, simulation, and modeling/edited by Lawrence E. Widman, Kenneth A. Loparo, and Norman R. Nielsen. p. cm. "A Wiley-Interscience publication." Includes bibliographies and index. ISBN 0-471-60599-9 1. Artificial Intelligence. 2. Computer simulation. I. Widman, Lawrence Edward, 1950- . II. Loparo, Kenneth A. III. Nielsen, N. R. (Norman R.) Q335A78783 1989 006.2 1.10 006.3--dc19 88-30282 CIP Printed in the United States of America 10 9 8 7 6 5 4 3 2 1 # ARTIFICIAL INTELLIGENCE, SIMULATION, AND MODELING ## **REVIEW BOARD** The editors would especially like to thank the dedication, time, and effort of the Editorial Review Board. Dr. Y. V. Reddy Artificial Intelligence Laboratory Department of Statistics and Computer Science West Virginia University Morgantown, West Virginia Dr. Bernard P. Zeigler Department of Electrical and Computer Engineering University of Arizona Tucson, Arizona ## **CONTRIBUTORS** - **Pierre Belanger** Department of Electrical Engineering, McGill University, Montreal, Quebec, Canada H3A 2K6 - Kurt M. Berger¹ Department of Systems Engineering and Center for Automation and Intelligent Systems Research, Case Western Reserve University, Cleveland, Ohio 44106 - Charles Chiu Department of Physics and Artificial Intelligence Laboratory, The University of Texas at Austin, Austin, Texas 78712 - **Bruce D'Ambrosio** Department of Computer Science, Oregon State University, Corvallis, Oregon 97331-4602 - Renato De Mori School of Computer Science, McGill University, Montreal, Quebec, Canada H3A 2K6; and Centre de recherche informatique de Montreal, Montreal, Quebec, Canada H3G 1N2 - Paul A. Fishwick Department of Computer and Information Sciences, University of Florida, Gainesville, Florida 32611 - Mark S. Fox Intelligent Systems Laboratory, The Robotics Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213-3890 - Peter Friedland Knowledge Systems Laboratory, Department of Computer Science, Stanford University, Stanford, California 94305 - Shoshana L. Hardt Department of Computer Science, State University of New York at Buffalo, Buffalo, New York 14260 - Nizwer Husain² Intelligent Systems Laboratory, The Robotics Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213-3890 - Peter D. Karp Knowledge Systems Laboratory, Department of Computer Science, Stanford University, Stanford, California 94305 - E. J. H. Kerckhoffs Faculty of Mathematics and Informatics, Delft University of Technology, 2628 BL Delft, The Netherlands - H. Koppelaar Faculty of Mathematics and Informatics, Delft University of Technology, 2628 BL Delft, The Netherlands ¹Present address: Charles Stark Draper Laboratory, Inc., 555 Technology Square, Cambridge, Massachusetts 02139. ²Present address: Intellicorp, 1975 El Camino Real West, Mountainview, California 94040-2216. - **Donald W. Kosy** The Robotics Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 - Mark A. Kramer Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 - **Benjamin Kuipers** Department of Computer Sciences, The University of Texas at Austin, Austin, Texas 78712 - Kenneth A. Loparo Department of Systems Engineering and Center for Automation and Intelligent Systems Research, Case Western Reserve University, Cleveland, Ohio 44106 - Pertti Lounamaa Nokia Corporation Research Center, P.O. Box 780, Helsinki, Finland SF-00101 - Malcolm McRoberts³ Intelligent Systems Laboratory, The Robotics Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213-3890 - **Robert M. O'Keefe** Department of Decision Sciences and Engineering Systems, Rensselaer Polytechnic Institute, Troy, New York 12180-3590 - Olayiwola O. Oyeleye Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 - Robert Prager CAE Electronics Ltd., St. Laurent, Quebec, Canada H4L 4X4; and School of Computer Science, McGill University, Montreal, Quebec, Canada H3A 2K6 - Y. V. Reddy Intelligent Systems Laboratory, The Robotics Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213-3890; and Artificial Intelligence Laboratory, Department of Statistics and Computer Science, West Virginia University, Morgantown, West Virginia 26506 - J. P. Rice Knowledge Systems Laboratory, Department of Computer Science, Stanford University, Stanford, California 94305 - **Jeff Rothenberg** The RAND Corporation, Santa Monica, California 90406-2138 - Sergio Ruiz-Mier⁴ Center for Intelligent Manufacturing Systems, Purdue University, West Lafayette, Indiana 47907 - **Joseph Talavage** Center for Intelligent Manufacturing Systems, Purdue University, West Lafayette, Indiana 47907 - H. J. van den Herik Department of Computer Science, Faculty of General Science, University of Limburg, 6211 LM Maastricht, The Netherlands ³Present address: McDonnell Douglas Astronautics Company, Kennedy Space Division, Technical Services Company, P.O. Box 21233, Kennedy Space Center, Florida 32815. ⁴Present address: P.O. Box 1615, La Paz, Bolivia. - Lawrence E. Widman Division of Cardiology, Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78284; and Cardiology Service, Audie L. Murphy Memorial Veterans' Hospital, San Antonio, Texas 78284 - **Bernard P. Zeigler** Department of Electrical and Computer Engineering, University of Arizona, Tucson, Arizona 85721 - **Guoqing Zhang⁵** Department of Electrical and Computer Engineering, University of Arizona, Tucson, Arizona 85721 ⁵Present address: Zycad Corporation, 1380 Willow Road, Menlo Park, California 94025. ## **PREFACE** This book is the product of a very typical phenomenon in scientific circles—the chance remark or encounter that leads to a whole sequence of events. In our case, a chance remark at a bull session one Sunday in the Spring of 1986 led to the assembly of this book. David Helman and Lawrence Widman were ruminating on the state of the world when David noticed an announcement for the first Workshop on AI and Simulation to be held in conjunction with the Fifth National Conference on Artificial Intelligence in Philadelphia. David had just signed a contract to edit an interdisciplinary book in the fields of artificial intelligence, cognitive science, and philosophy. He suggested that Larry undertake the editing of a similar book related to AI and simulation. One thing led to another, and David and Larry attended the workshop. A sample of speakers, whose work might form the framework of a review of the nascent field of AI and simulation, were consulted. Each of the potential contributors responded favorably to the invitation, and the germ of an idea began to grow. Ken Loparo was invited to join the venture and the search for a publisher undertaken. The goals and structure of the book were established, contributors identified, invitations extended, and the book began to take shape. The publisher introduced Norman Nielsen to the editors. His insights proved to be so helpful that he was invited to become a co-editor when for reasons of time David's interests were drawn away last year. The field of AI has much to offer the world of simulation, and vice versa. Accordingly, we have organized the contributions in this book to address both points of view, examining the field from the perspective of - traditional simulationists who seek greater representational flexibility and ease of use which AI techniques can provide and - computer scientists with a symbolic computing background who seek greater power and realism which rigorous simulation techniques can provide. To this end, we have divided the book into three parts. The first part contains eight chapters that discuss the theoretical underpinnings of AI and simulation. The second part contains three chapters that discuss the application of simulation techniques to current research problems in AI, while the third part contains eight chapters that discuss the application of AI methods to the needs of simulationists and simulation users. #### x PREFACE In designing and assembling this book, we have assumed a broad audience with interests ranging from AI to simulation and experience ranging from little to extensive. Accordingly, we have included a fairly comprehensive introductory chapter that that seeks to provide a framework for the remaining 19 chapters. It provides - a brief history of AI and of simulation, - a concise introduction to the basic concepts of each discipline, - a survey of the current literature related to the intersection of these two disciplines, and - an introduction to each of the book's parts and the chapters therein. Many people have contributed to the development of this book over the two years that it has been in gestation. First and foremost, of course, are the authors, without whose contributions this book would not have been possible. They were a marvelous group to work with, and we owe them a special debt of gratitude. Not only have they patiently borne our requests for repeated revisions, but they have modified their manuscripts in order to achieve a degree of uniformity in the scope and depth of the material presented. Credit must also be given to Professor David Helman of Case Western Reserve University. Not only did he plant the seed that gave rise to this book, but he nurtured the emerging seedling as well. Truly, his spirit is imprinted on this book. Finally, we would like to credit our editor, Diane Cerra, Wanda Cuevas, Jenet McIver, Robert Hilbert, and the entire Wiley team. Not only did they have faith in our vision of what one day might become a book, but they actively guided and supported us in that endeavor. May you enjoy the fruits of everyone's labors and find that the material is of assistance to you in understanding the growing field of AI and simulation and in carrying out your work. LAWRENCE E. WIDMAN KENNETH A. LOPARO NORMAN R. NIELSEN San Antonio, Texas Cleveland, Ohio Palo Alto, California ## **CONTENTS** | 1. | Artificial Intelligence, Simulation, and Modeling: A Critical Survey Lawrence E. Widman and Kenneth A. Loparo | 1 | |-----------|---|----| | | Motivation and Overview / 1 Histories of Artificial Intelligence and of Simulation / 2 Tutorial on Basic Concepts / 5 Growth Areas / 20 Overview of the Book / 31 Summary and Cautionary Note / 36 References / 37 | | | I.
INT | CONCEPTUAL BASES FOR ARTIFICIAL FELLIGENCE AND SIMULATION | 45 | | 2. | The System Entity Structure: Knowledge Representation for Simulation Modeling and Design Guoqing Zhang and Bernard P. Ziegler | 47 | | | Introduction / 47 Representation Schemes and Knowledge / 47 The System Entity Structure/Model Base / 51 Formal Representation of the Entity Structure and Its Transformations / 56 Restrictions / 60 Applications of the Knowledge Framework: Multifaceted Modeling / 69 Conclusions / 71 References / 72 | | | 3. | The Nature of Modeling Jeff Rothenberg | 75 | | | Introduction / 75 Overview of Modeling / 75 Other Models of Modeling / 76 Definition of Modeling / 78 | | | | | | 4. 5. 6. | Models, Symbols, and Representations / 80 Examples of Different Types of Models / 81 Choosing among Types of Models / 82 Computer Simulation / 83 A Modeling Perspective on AI / 84 AI in Simulation and Simulation in AI / 85 Knowledge-based Simulation at the RAND Corporation / 86 Summary and Conclusion / 89 References / 90 | | |---|-----| | Process Abstraction in Simulation Modeling Paul A. Fishwick | 93 | | Introduction / 93 A Formal Foundation / 95 An Example Abstraction Network / 101 HIRES: A Multilevel Simulation Language / 106 An Application: Scene Animation / 112 Conclusions / 126 Appendix: HIRES Functions / 127 References / 129 | | | Extending the Mathematics in Qualitative Process Theory Bruce D'Ambrosio | 133 | | Introduction / 133 Example / 135 Ambiguity in QP Theory / 137 Linguistic Influence Sensitivities / 140 Linguistic Perturbation Analysis / 146 Evaluation / 154 Summary / 155 References / 157 | | | Semi-Quantitative "Close-Enough" Systems Dynamics Models:
An Alternative to Qualitative Simulation
Lawrence E. Widman | 159 | | Introduction / 159 Methods, Illustrated with an Extended Example / 161 Implementation / 172 Results / 174 Discussion / 180 Summary / 185 References / 186 | | | 7. | Coordinating the Use of Qualitative and Quantitative Knowledge in Declarative Device Modeling Peter D. Karp and Peter Friedland | 189 | |------------|---|-----| | | Introduction / 189 Motivations / 190 Techniques / 192 An Example / 201 Limitations / 204 Summary / 204 References / 205 | | | 8. | Toward Parallel Intelligent Simulation E. J. H. Kerckhoffs, H. Koppelaar, and H. J. van den Herik | 207 | | | Introduction and Overview / 207 Advanced Process Control and Simulation Environment: An Opinion / 209 Research Scenarios for Advanced Simulation / 212 Parallel Processing in Systems Simulation / 213 Parallel Processing in the AI Domain / 219 The HYDRA Project at Delft University of Technology / 222 Concluding Note / 228 References / 228 | | | 9. | Problems with Problem Solving in Parallel: The Poligon System J. P. Rice | 231 | | | Introduction / 231 Parallelism and Problem Solving / 232 Poligon: A System for Parallel Problem Solving / 237 Experiments / 245 Conclusions / 250 References / 251 | | | II.
INT | REASONING BY SIMULATION IN ARTIFICIAL FELLIGENCE SYSTEMS | 255 | | 10. | Qualitative Reasoning with Causal Models in Diagnosis of Complex Systems Benjamin Kuipers | 257 | | | Introduction / 257 Why Qualitative Models in Diagnosis? / 257 A Mechanism Explains the Observations / 258 Qualitative Simulation / 260 | | | | 5. Qualitative Models in Medical Physiology / 264 6. A Problem of Ambiguity and Its Solution / 269 7. Summary / 272 References / 273 | | |------------|---|-----| | 11. | Constructing Qualitative Domain Maps from Quantitative Simulation Models Charles Chiu | 275 | | | Introduction / 275 The Roller Coaster World / 280 The Quantitative Simulator and Algebraic Reasoners / 284 Pattern of Qualitative Behaviors Based on Domain Maps / 287 Discussion / 295 Appendix: Identities for the Monotonic Functions / 297 References / 298 | | | 12. | Issues in Qualitative Reasoning about Diffusional Processes Shoshana L. Hardt | 301 | | | Qualitative Physics / 301 The Growth of Complexity / 302 Difficulties in Modeling / 305 Seven Problems about Diffusional Flows / 307 Reasoning and Lack of Knowledge / 308 The Essentials of Diffusion Speeds / 311 Problem Perspective and Decomposition / 315 Problem Interpretation and Reasoning / 317 Discussion / 321 References / 322 | | | III.
TO | APPLYING ARTIFICIAL INTELLIGENCE ENRICH SIMULATION | 325 | | 13. | The Role of Causal and Noncausal Constraints in Steady-State
Qualitative Modeling
Olayiwola O. Oyeleye and Mark A. Kramer | 327 | | | Introduction / 327 Simulation of Steady States by Confluences / 328 Use of Causal Information in Steady-State
Simulation / 336 | | | Qualitative Fault Simulation of a Chemical
Reactor System / 343 Discussion / 348 Appendix A: Steady-State Equations for Heat Exchanger
with Bypass / 349 Appendix B: Noncausal Confluences for Continuous
Stirred-Tank Reactor with Recycle / 351 Appendix C: Confluences Derived from the ESDG / 353 References / 357 | | |--|-----| | The Role of Artificial Intelligence in Discrete-Event Simulation Robert M. O'Keefe | 359 | | Introduction: Simulation of the Discrete-Event Kind / 359 The Promise of AI in Simulation / 361 Using AI to Make Simulation Easier / 362 The Emergence of Knowledge-based Simulation / 368 The PROLOG Simulation System: PROSS / 371 Conclusions / 375 References / 377 | | | A Hybrid Paradigm for Modeling of Complex Systems
Sergio Ruiz-Mier and Joseph Talavage | 381 | | Introduction / 381 Object-oriented Programming / 382 Logic Programming / 382 Modeling Complex Systems / 383 CAYENE / 383 SIMYON / 386 Complex Routing in a Manufacturing Cell / 388 Modeling Adaptive Systems / 390 Conclusion / 393 References / 394 | | | An Incremental Object-oriented Language for Continuous
Simulation Models
Pertti Lounamaa | 397 | | Introduction / 397 Motivation for Research / 398 Simulation and Expert Environment / 399 Current Research Goals / 399 An Object-oriented Modeling Language / 400 | | 14. 15. 16. | | 6. Implementation and Execution of Models / 407 7. An Example Model in the Language / 408 8. Language Design Trade-offs / 410 9. Related and Future Research / 411 10. Relevance of Obtained Results / 412 References / 413 | 8 | |-----|--|-----| | 17. | A Hierarchical Framework for Learning Control Kurt M. Berger and Kenneth A. Loparo | 415 | | | Introduction / 415 A Hierarchical Intelligent Control Framework / 421 Simulation Results / 438 Conclusions / 441 References / 442 | | | 18. | Knowledge-based Simulation: An Artificial Intelligence
Approach to System Modeling and Automating the
Simulation Life Cycle
Mark S. Fox, Nizwer Husain, Malcolm McRoberts,
and Y. V. Reddy | 447 | | | Introduction / 447 Corporate Distribution Domain / 450 Model Building / 452 Model Simulation / 458 Automatic Analysis of Data / 473 Automating the Simulation Life Cycle / 481 Conclusions / 484 References / 484 | | | 19. | Applications of Explanation in Financial Modeling Donald W. Kosy | 487 | | | Introduction / 487 The Explanation Problem for Financial Models / 489 An Explanation Procedure / 492 Experiments / 496 Discussion and Conclusions / 506 Appendix A: What-If Results for the Battery Company / 507 Appendix B: Wholesale and Retail Results for the ABC Company / 508 References / 509 | | | | the annual contract of the con | | Index xvii 545